电影标签预测:基于转换器的极端多标签多模态解决方案及说明

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Massimo Guarascio, Marco Minici, Francesco Sergio Pisani, Erika De Francesco, Pasquale Lambardi
{"title":"电影标签预测:基于转换器的极端多标签多模态解决方案及说明","authors":"Massimo Guarascio, Marco Minici, Francesco Sergio Pisani, Erika De Francesco, Pasquale Lambardi","doi":"10.1007/s10844-023-00836-7","DOIUrl":null,"url":null,"abstract":"<p>Providing rich and accurate metadata for indexing media content is a crucial problem for all the companies offering streaming entertainment services. These metadata are commonly employed to enhance search engine results and feed recommendation algorithms to improve the matching with user interests. However, the problem of labeling multimedia content with informative tags is challenging as the labeling procedure, manually performed by domain experts, is time-consuming and prone to error. Recently, the adoption of AI-based methods has been demonstrated to be an effective approach for automating this complex process. However, developing an effective solution requires coping with different challenging issues, such as data noise and the scarcity of labeled examples during the training phase. In this work, we address these challenges by introducing a Transformer-based framework for multi-modal multi-label classification enriched with model prediction explanation capabilities. These explanations can help the domain expert to understand the system’s predictions. Experimentation conducted on two real test cases demonstrates its effectiveness.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movie tag prediction: An extreme multi-label multi-modal transformer-based solution with explanation\",\"authors\":\"Massimo Guarascio, Marco Minici, Francesco Sergio Pisani, Erika De Francesco, Pasquale Lambardi\",\"doi\":\"10.1007/s10844-023-00836-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Providing rich and accurate metadata for indexing media content is a crucial problem for all the companies offering streaming entertainment services. These metadata are commonly employed to enhance search engine results and feed recommendation algorithms to improve the matching with user interests. However, the problem of labeling multimedia content with informative tags is challenging as the labeling procedure, manually performed by domain experts, is time-consuming and prone to error. Recently, the adoption of AI-based methods has been demonstrated to be an effective approach for automating this complex process. However, developing an effective solution requires coping with different challenging issues, such as data noise and the scarcity of labeled examples during the training phase. In this work, we address these challenges by introducing a Transformer-based framework for multi-modal multi-label classification enriched with model prediction explanation capabilities. These explanations can help the domain expert to understand the system’s predictions. Experimentation conducted on two real test cases demonstrates its effectiveness.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-023-00836-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-023-00836-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对于所有提供流媒体娱乐服务的公司来说,为媒体内容索引提供丰富而准确的元数据是一个至关重要的问题。这些元数据通常用于增强搜索引擎结果,并为推荐算法提供信息,以提高与用户兴趣的匹配度。然而,为多媒体内容标注信息标签是一个具有挑战性的问题,因为由领域专家手动执行的标注程序既耗时又容易出错。最近,基于人工智能的方法被证明是实现这一复杂过程自动化的有效方法。然而,开发有效的解决方案需要应对各种挑战性问题,如数据噪声和训练阶段标注示例的稀缺性。在这项工作中,我们引入了一个基于 Transformer 的多模态多标签分类框架,并丰富了模型预测解释功能,以应对这些挑战。这些解释可以帮助领域专家理解系统的预测。在两个实际测试案例中进行的实验证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Movie tag prediction: An extreme multi-label multi-modal transformer-based solution with explanation

Movie tag prediction: An extreme multi-label multi-modal transformer-based solution with explanation

Providing rich and accurate metadata for indexing media content is a crucial problem for all the companies offering streaming entertainment services. These metadata are commonly employed to enhance search engine results and feed recommendation algorithms to improve the matching with user interests. However, the problem of labeling multimedia content with informative tags is challenging as the labeling procedure, manually performed by domain experts, is time-consuming and prone to error. Recently, the adoption of AI-based methods has been demonstrated to be an effective approach for automating this complex process. However, developing an effective solution requires coping with different challenging issues, such as data noise and the scarcity of labeled examples during the training phase. In this work, we address these challenges by introducing a Transformer-based framework for multi-modal multi-label classification enriched with model prediction explanation capabilities. These explanations can help the domain expert to understand the system’s predictions. Experimentation conducted on two real test cases demonstrates its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信