Chibuzo Chukwu, Peter Betts, David Moore, Radhakrishna Munukutla, Robin Armit, Mark McLean, Lachlan Grose
{"title":"磁数据欧拉解卷积的无监督机器学习和深度簇:地质结构成像的新方法","authors":"Chibuzo Chukwu, Peter Betts, David Moore, Radhakrishna Munukutla, Robin Armit, Mark McLean, Lachlan Grose","doi":"10.1080/08123985.2023.2299475","DOIUrl":null,"url":null,"abstract":"We present a novel approach that determines the location and dip of geologic structures by clustering Euler deconvolution depth solutions using Density-Based Spatial Clustering Applications with No...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised machine learning and depth clusters of Euler deconvolution of magnetic data: a new approach to imaging geological structures\",\"authors\":\"Chibuzo Chukwu, Peter Betts, David Moore, Radhakrishna Munukutla, Robin Armit, Mark McLean, Lachlan Grose\",\"doi\":\"10.1080/08123985.2023.2299475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach that determines the location and dip of geologic structures by clustering Euler deconvolution depth solutions using Density-Based Spatial Clustering Applications with No...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/08123985.2023.2299475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2023.2299475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised machine learning and depth clusters of Euler deconvolution of magnetic data: a new approach to imaging geological structures
We present a novel approach that determines the location and dip of geologic structures by clustering Euler deconvolution depth solutions using Density-Based Spatial Clustering Applications with No...