正己烷、乙酸乙酯和不同萃取剂的 LLE 数据的确定和相关性

IF 2.2 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Fangfang Dai, Jiangting Cao, Na Liu, Meiyuan Peng, Chen Wang
{"title":"正己烷、乙酸乙酯和不同萃取剂的 LLE 数据的确定和相关性","authors":"Fangfang Dai,&nbsp;Jiangting Cao,&nbsp;Na Liu,&nbsp;Meiyuan Peng,&nbsp;Chen Wang","doi":"10.1016/j.jct.2024.107257","DOIUrl":null,"url":null,"abstract":"<div><p><span>In order to separate n-hexane/ethyl acetate (EA) produced in industrial production, the liquid–liquid extraction was used to separate the azeotropic system with sulfolane, 1,2-propanediol and dimethyl sulfoxide (DMSO) as extractants. The liquid–liquid equilibrium (LLE) data of the n-hexane + EA + sulfolane/1,2-propanediol/DMSO were measured at 303.15 K, 313.15 K and 323.15 K. The extraction capacity of the extractants were evaluated by the distribution coefficient (D) and separation factor (S). The LLE data were correlated using the NRTL and UNIQUAC thermodynamic models to obtain binary interaction parameters. The root mean square deviation (RMSD) were all less than 0.02 indicating that the two models were suitable for the phase equilibrium behavior. GUI-MATLAB software was used to test the reliability of the regressed binary interaction parameters. The Dmol</span><sup>3</sup> module of the Materials Studio was used to analyze σ-profile of n-hexane, EA and extractants and to assess the interaction energy between the components. The results show that sulfolane is the best extractant for the separation of n-hexane + EA.</p></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination and correlation of LLE data for n-hexane, ethyl acetate and different extractants\",\"authors\":\"Fangfang Dai,&nbsp;Jiangting Cao,&nbsp;Na Liu,&nbsp;Meiyuan Peng,&nbsp;Chen Wang\",\"doi\":\"10.1016/j.jct.2024.107257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In order to separate n-hexane/ethyl acetate (EA) produced in industrial production, the liquid–liquid extraction was used to separate the azeotropic system with sulfolane, 1,2-propanediol and dimethyl sulfoxide (DMSO) as extractants. The liquid–liquid equilibrium (LLE) data of the n-hexane + EA + sulfolane/1,2-propanediol/DMSO were measured at 303.15 K, 313.15 K and 323.15 K. The extraction capacity of the extractants were evaluated by the distribution coefficient (D) and separation factor (S). The LLE data were correlated using the NRTL and UNIQUAC thermodynamic models to obtain binary interaction parameters. The root mean square deviation (RMSD) were all less than 0.02 indicating that the two models were suitable for the phase equilibrium behavior. GUI-MATLAB software was used to test the reliability of the regressed binary interaction parameters. The Dmol</span><sup>3</sup> module of the Materials Studio was used to analyze σ-profile of n-hexane, EA and extractants and to assess the interaction energy between the components. The results show that sulfolane is the best extractant for the separation of n-hexane + EA.</p></div>\",\"PeriodicalId\":54867,\"journal\":{\"name\":\"Journal of Chemical Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021961424000107\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424000107","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了分离工业生产中产生的正己烷/醋酸乙酯(EA),采用液液萃取法分离了以磺烷、1,2-丙二醇和二甲基亚砜(DMSO)为萃取剂的共沸体系。在 303.15 K、313.15 K 和 323.15 K 下测量了正己烷 + EA + 磺烷/1,2-丙二醇/DMSO 的液液平衡(LLE)数据。萃取剂的萃取能力通过分配系数(D)和分离因子(S)进行评估。使用 NRTL 和 UNIQUAC 热力学模型对 LLE 数据进行关联,以获得二元相互作用参数。均方根偏差(RMSD)均小于 0.02,表明这两种模型都适合相平衡行为。使用 GUI-MATLAB 软件测试回归的二元相互作用参数的可靠性。使用 Materials Studio 的 Dmol3 模块分析了正己烷、EA 和萃取剂的σ曲线,并评估了各组分之间的相互作用能。结果表明,磺烷是分离正己烷+EA的最佳萃取剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination and correlation of LLE data for n-hexane, ethyl acetate and different extractants

In order to separate n-hexane/ethyl acetate (EA) produced in industrial production, the liquid–liquid extraction was used to separate the azeotropic system with sulfolane, 1,2-propanediol and dimethyl sulfoxide (DMSO) as extractants. The liquid–liquid equilibrium (LLE) data of the n-hexane + EA + sulfolane/1,2-propanediol/DMSO were measured at 303.15 K, 313.15 K and 323.15 K. The extraction capacity of the extractants were evaluated by the distribution coefficient (D) and separation factor (S). The LLE data were correlated using the NRTL and UNIQUAC thermodynamic models to obtain binary interaction parameters. The root mean square deviation (RMSD) were all less than 0.02 indicating that the two models were suitable for the phase equilibrium behavior. GUI-MATLAB software was used to test the reliability of the regressed binary interaction parameters. The Dmol3 module of the Materials Studio was used to analyze σ-profile of n-hexane, EA and extractants and to assess the interaction energy between the components. The results show that sulfolane is the best extractant for the separation of n-hexane + EA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Thermodynamics
Journal of Chemical Thermodynamics 工程技术-热力学
CiteScore
5.60
自引率
15.40%
发文量
199
审稿时长
79 days
期刊介绍: The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published. The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed. Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered. The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review. Contributions of a routine nature or reporting on uncharacterised materials are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信