矿产资源潜力评价结果数据多级智能检索方法介绍

IF 1.7 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Li Chaokui, Liu Mingxi, Guo Ruirong, Zhao Yanan, Yang Wentao, Zhang Xinchang
{"title":"矿产资源潜力评价结果数据多级智能检索方法介绍","authors":"Li Chaokui, Liu Mingxi, Guo Ruirong, Zhao Yanan, Yang Wentao, Zhang Xinchang","doi":"10.1515/geo-2022-0504","DOIUrl":null,"url":null,"abstract":"The geological data of the mineral resource potential evaluation results (MRPERs) are diverse and extremely large; efficiently retrieving data remains a challenging problem. In this work, a new way of using the Hadoop platform is proposed. The Hadoop distributed file system is used to store the massive data and construct the data storage model of geological and mineral resources. Using a distributed Hadoop database (HBase) that supports the fast query of a single record, it manages its metadata and retrieves the data of MRPERs quickly. At the same time, a multi-level index directory is designed to support the non-main key query on the HBase. This overcomes the shortcoming that the HBase only supports the simple index based on the main key and realizes the intelligent, efficient retrieval of MRPERs. The validity and feasibility of the proposed method are further verified by experiments using the MRPER data in the Institute of Mineral Resources, Chinese Academy of Geological Sciences.","PeriodicalId":48712,"journal":{"name":"Open Geosciences","volume":"80 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing an intelligent multi-level retrieval method for mineral resource potential evaluation result data\",\"authors\":\"Li Chaokui, Liu Mingxi, Guo Ruirong, Zhao Yanan, Yang Wentao, Zhang Xinchang\",\"doi\":\"10.1515/geo-2022-0504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geological data of the mineral resource potential evaluation results (MRPERs) are diverse and extremely large; efficiently retrieving data remains a challenging problem. In this work, a new way of using the Hadoop platform is proposed. The Hadoop distributed file system is used to store the massive data and construct the data storage model of geological and mineral resources. Using a distributed Hadoop database (HBase) that supports the fast query of a single record, it manages its metadata and retrieves the data of MRPERs quickly. At the same time, a multi-level index directory is designed to support the non-main key query on the HBase. This overcomes the shortcoming that the HBase only supports the simple index based on the main key and realizes the intelligent, efficient retrieval of MRPERs. The validity and feasibility of the proposed method are further verified by experiments using the MRPER data in the Institute of Mineral Resources, Chinese Academy of Geological Sciences.\",\"PeriodicalId\":48712,\"journal\":{\"name\":\"Open Geosciences\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geo-2022-0504\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0504","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

矿产资源潜力评估结果(MRPERs)的地质数据种类繁多且极其庞大,有效检索数据仍是一个具有挑战性的问题。在这项工作中,提出了一种使用 Hadoop 平台的新方法。利用 Hadoop 分布式文件系统存储海量数据,构建地质矿产资源数据存储模型。利用支持单条记录快速查询的分布式 Hadoop 数据库(HBase),管理其元数据,快速检索 MRPER 数据。同时,设计了一个多级索引目录,以支持对 HBase 的非主键查询。这克服了 HBase 只支持基于主键的简单索引的缺点,实现了 MRPER 的智能、高效检索。通过使用中国地质科学院矿产资源研究所的 MRPER 数据进行实验,进一步验证了所提方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introducing an intelligent multi-level retrieval method for mineral resource potential evaluation result data
The geological data of the mineral resource potential evaluation results (MRPERs) are diverse and extremely large; efficiently retrieving data remains a challenging problem. In this work, a new way of using the Hadoop platform is proposed. The Hadoop distributed file system is used to store the massive data and construct the data storage model of geological and mineral resources. Using a distributed Hadoop database (HBase) that supports the fast query of a single record, it manages its metadata and retrieves the data of MRPERs quickly. At the same time, a multi-level index directory is designed to support the non-main key query on the HBase. This overcomes the shortcoming that the HBase only supports the simple index based on the main key and realizes the intelligent, efficient retrieval of MRPERs. The validity and feasibility of the proposed method are further verified by experiments using the MRPER data in the Institute of Mineral Resources, Chinese Academy of Geological Sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Geosciences
Open Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
10.00%
发文量
63
审稿时长
15 weeks
期刊介绍: Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an open access, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Atmospheric Sciences, Geology, Geophysics, Geography, Oceanography and Hydrology, Glaciology, Speleology, Volcanology, Soil Science, Palaeoecology, Geotourism, Geoinformatics, Geostatistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信