多目标多项式优化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawang Nie, Zi Yang
{"title":"多目标多项式优化","authors":"Jiawang Nie, Zi Yang","doi":"10.1287/moor.2023.0200","DOIUrl":null,"url":null,"abstract":"The multi-objective optimization is to optimize several objective functions over a common feasible set. Because the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective optimization problems that are given by polynomial functions. First, we study the geometry for (weakly) Pareto values and represent Pareto front as the boundary of a convex set. Linear scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxations to solve them and how to detect existence or nonexistence of proper weights. For CSPs, we show how to solve them by moment relaxations. Moreover, we show how to check whether a given point is a (weakly) Pareto point or not and how to detect existence or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of polynomial optimization, which is used to detect nonexistence of proper weights or (weakly) Pareto points.Funding: J. Nie is partially supported by the National Science Foundation [Grant DMS-2110780].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Multi-Objective Polynomial Optimization\",\"authors\":\"Jiawang Nie, Zi Yang\",\"doi\":\"10.1287/moor.2023.0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-objective optimization is to optimize several objective functions over a common feasible set. Because the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective optimization problems that are given by polynomial functions. First, we study the geometry for (weakly) Pareto values and represent Pareto front as the boundary of a convex set. Linear scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxations to solve them and how to detect existence or nonexistence of proper weights. For CSPs, we show how to solve them by moment relaxations. Moreover, we show how to check whether a given point is a (weakly) Pareto point or not and how to detect existence or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of polynomial optimization, which is used to detect nonexistence of proper weights or (weakly) Pareto points.Funding: J. Nie is partially supported by the National Science Foundation [Grant DMS-2110780].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0200\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0200","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多目标优化是在一个共同的可行集合上优化多个目标函数。由于这些目标通常不共享一个共同的优化器,人们通常会考虑(弱)帕累托点。本文研究多项式函数给出的多目标优化问题。首先,我们研究了(弱)帕累托值的几何形状,并将帕累托前沿表示为凸集的边界。线性标量化问题(LSPs)和切比雪夫标量化问题(CSPs)是获得(弱)帕累托点的典型方法。对于线性标度化问题,我们展示了如何使用严格松弛来解决它们,以及如何检测适当权重的存在与否。对于 CSP,我们展示了如何通过矩松弛来求解。此外,我们还展示了如何检查给定点是否为(弱)帕累托点,以及如何检测(弱)帕累托点是否存在。我们还研究了如何检测多项式优化的无界性,它可用于检测适当权重或(弱)帕累托点的不存在:J. Nie 由美国国家科学基金会 [Grant DMS-2110780] 部分资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Multi-Objective Polynomial Optimization
The multi-objective optimization is to optimize several objective functions over a common feasible set. Because the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective optimization problems that are given by polynomial functions. First, we study the geometry for (weakly) Pareto values and represent Pareto front as the boundary of a convex set. Linear scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxations to solve them and how to detect existence or nonexistence of proper weights. For CSPs, we show how to solve them by moment relaxations. Moreover, we show how to check whether a given point is a (weakly) Pareto point or not and how to detect existence or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of polynomial optimization, which is used to detect nonexistence of proper weights or (weakly) Pareto points.Funding: J. Nie is partially supported by the National Science Foundation [Grant DMS-2110780].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信