地层孔隙压力预测的机器学习算法研究进展

IF 1.4 4区 工程技术 Q4 ENERGY & FUELS
Haoyu Pan, Song Deng, Chaowei Li, Yanshuai Sun, Yanhong Zhao, Lin Shi, Chao Hu
{"title":"地层孔隙压力预测的机器学习算法研究进展","authors":"Haoyu Pan, Song Deng, Chaowei Li, Yanshuai Sun, Yanhong Zhao, Lin Shi, Chao Hu","doi":"10.1080/10916466.2023.2299711","DOIUrl":null,"url":null,"abstract":"Formation pore pressure is one of the most important basic data in petroleum exploration and development. The traditional prediction model of formation pore pressure relies on artificial experience...","PeriodicalId":19888,"journal":{"name":"Petroleum Science and Technology","volume":"120 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress of machine-learning algorithm for formation pore pressure prediction\",\"authors\":\"Haoyu Pan, Song Deng, Chaowei Li, Yanshuai Sun, Yanhong Zhao, Lin Shi, Chao Hu\",\"doi\":\"10.1080/10916466.2023.2299711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formation pore pressure is one of the most important basic data in petroleum exploration and development. The traditional prediction model of formation pore pressure relies on artificial experience...\",\"PeriodicalId\":19888,\"journal\":{\"name\":\"Petroleum Science and Technology\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10916466.2023.2299711\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10916466.2023.2299711","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

地层孔隙压力是石油勘探和开发中最重要的基础数据之一。传统的地层孔隙压力预测模型依赖于人工经验...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research progress of machine-learning algorithm for formation pore pressure prediction
Formation pore pressure is one of the most important basic data in petroleum exploration and development. The traditional prediction model of formation pore pressure relies on artificial experience...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Science and Technology
Petroleum Science and Technology 工程技术-工程:化工
CiteScore
2.90
自引率
13.30%
发文量
277
审稿时长
2.7 months
期刊介绍: The international journal of Petroleum Science and Technology publishes original, high-quality peer-reviewed research and review articles that explore: -The fundamental science of fluid-fluid and rock-fluids interactions and multi-phase interfacial and transport phenomena through porous media related to advanced petroleum recovery processes, -The application of novel concepts and processes for enhancing recovery of subsurface energy resources in a carbon-sensitive manner, -Case studies of scaling up the laboratory research findings to field pilots and field-wide applications. -Other salient technological challenges facing the petroleum industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信