Omar Sallam, Rihui Feng, Jack Stason, Xinguo Wang, Mirjam Fürth
{"title":"基于立体视觉的海况测量和浮动结构监测系统","authors":"Omar Sallam, Rihui Feng, Jack Stason, Xinguo Wang, Mirjam Fürth","doi":"10.1016/j.image.2023.117088","DOIUrl":null,"url":null,"abstract":"<div><p><span>Using computer vision<span> techniques such as stereo vision systems for sea state measurement or for </span></span>offshore structures<span><span> monitoring can improve the measurement fidelity<span> and accuracy with no significant additional cost. In this paper, two experiments (in-lab/open-sea) are conducted to study the performance of stereo vision system to measure the water wave surface elevation and rigid body heaving motion. For the in-lab experiment, regular water waves are generated in a wave tank for different frequencies and wave heights, where the water surface is scanned by the stereo vision camera installed on the top of the tank. Surface elevation inferred by the stereo vision is verified by an installed stationary side camera that records the water surface through the tank transparent side window, water surface elevation measured by the side camera recordings is extracted using edge detection algorithm. During the in-lab experiment a heaving buoy is installed to test the performance of Visual Simultaneous </span></span>Localization<span> and Mapping (VSLAM) algorithm to monitor the buoy heave motion. The VSLAM algorithm fuses a buoy onboard stereo vision recordings with an embedded Inertial Measurement Unit<span> (IMU) to estimate the 6-DOF of a rigid body. The Buoy motion VSLAM measurements are verified by a KLT tracking algorithm implemented on the video recordings of the stationary side camera. The open-sea experiment is implemented in Lake Somerville, Texas. The stereo vision system is installed to measure the water surface elevation and directional spectrum of the wind generated irregular waves. The open-sea wave measurements by the stereo vision are verified by a Sofar commercial wave buoys deployed in the testing location.</span></span></span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"122 ","pages":"Article 117088"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereo vision based systems for sea-state measurement and floating structures monitoring\",\"authors\":\"Omar Sallam, Rihui Feng, Jack Stason, Xinguo Wang, Mirjam Fürth\",\"doi\":\"10.1016/j.image.2023.117088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Using computer vision<span> techniques such as stereo vision systems for sea state measurement or for </span></span>offshore structures<span><span> monitoring can improve the measurement fidelity<span> and accuracy with no significant additional cost. In this paper, two experiments (in-lab/open-sea) are conducted to study the performance of stereo vision system to measure the water wave surface elevation and rigid body heaving motion. For the in-lab experiment, regular water waves are generated in a wave tank for different frequencies and wave heights, where the water surface is scanned by the stereo vision camera installed on the top of the tank. Surface elevation inferred by the stereo vision is verified by an installed stationary side camera that records the water surface through the tank transparent side window, water surface elevation measured by the side camera recordings is extracted using edge detection algorithm. During the in-lab experiment a heaving buoy is installed to test the performance of Visual Simultaneous </span></span>Localization<span> and Mapping (VSLAM) algorithm to monitor the buoy heave motion. The VSLAM algorithm fuses a buoy onboard stereo vision recordings with an embedded Inertial Measurement Unit<span> (IMU) to estimate the 6-DOF of a rigid body. The Buoy motion VSLAM measurements are verified by a KLT tracking algorithm implemented on the video recordings of the stationary side camera. The open-sea experiment is implemented in Lake Somerville, Texas. The stereo vision system is installed to measure the water surface elevation and directional spectrum of the wind generated irregular waves. The open-sea wave measurements by the stereo vision are verified by a Sofar commercial wave buoys deployed in the testing location.</span></span></span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"122 \",\"pages\":\"Article 117088\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523001704\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001704","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Stereo vision based systems for sea-state measurement and floating structures monitoring
Using computer vision techniques such as stereo vision systems for sea state measurement or for offshore structures monitoring can improve the measurement fidelity and accuracy with no significant additional cost. In this paper, two experiments (in-lab/open-sea) are conducted to study the performance of stereo vision system to measure the water wave surface elevation and rigid body heaving motion. For the in-lab experiment, regular water waves are generated in a wave tank for different frequencies and wave heights, where the water surface is scanned by the stereo vision camera installed on the top of the tank. Surface elevation inferred by the stereo vision is verified by an installed stationary side camera that records the water surface through the tank transparent side window, water surface elevation measured by the side camera recordings is extracted using edge detection algorithm. During the in-lab experiment a heaving buoy is installed to test the performance of Visual Simultaneous Localization and Mapping (VSLAM) algorithm to monitor the buoy heave motion. The VSLAM algorithm fuses a buoy onboard stereo vision recordings with an embedded Inertial Measurement Unit (IMU) to estimate the 6-DOF of a rigid body. The Buoy motion VSLAM measurements are verified by a KLT tracking algorithm implemented on the video recordings of the stationary side camera. The open-sea experiment is implemented in Lake Somerville, Texas. The stereo vision system is installed to measure the water surface elevation and directional spectrum of the wind generated irregular waves. The open-sea wave measurements by the stereo vision are verified by a Sofar commercial wave buoys deployed in the testing location.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.