列型有限群中最大环的归一化分裂

IF 0.4 3区 数学 Q4 LOGIC
A. A. Galt, A. M. Staroletov
{"title":"列型有限群中最大环的归一化分裂","authors":"A. A. Galt,&nbsp;A. M. Staroletov","doi":"10.1007/s10469-023-09721-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite group of Lie type, and <i>T</i> some maximal torus of the group <i>G</i>. We bring to a close the study of the question of whether there exists a complement for a torus <i>T</i> in its algebraic normalizer <i>N</i> (<i>G, T</i>). It is proved that any maximal torus of a group <i>G</i> ∈ {<i>G</i><sub>2</sub>(<i>q</i>), <sup>2</sup><i>G</i><sub>2</sub>(<i>q</i>), <sup>3</sup><i>D</i><sub>4</sub>(<i>q</i>)} has a complement in its algebraic normalizer. Also we consider the remaining twisted classical groups <sup>2</sup><i>A</i><sub><i>n</i></sub>(<i>q</i>) and <sup>2</sup><i>D</i><sub><i>n</i></sub>(<i>q</i>).</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting of Normalizers of Maximal Tori in Finite Groups of Lie Type\",\"authors\":\"A. A. Galt,&nbsp;A. M. Staroletov\",\"doi\":\"10.1007/s10469-023-09721-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a finite group of Lie type, and <i>T</i> some maximal torus of the group <i>G</i>. We bring to a close the study of the question of whether there exists a complement for a torus <i>T</i> in its algebraic normalizer <i>N</i> (<i>G, T</i>). It is proved that any maximal torus of a group <i>G</i> ∈ {<i>G</i><sub>2</sub>(<i>q</i>), <sup>2</sup><i>G</i><sub>2</sub>(<i>q</i>), <sup>3</sup><i>D</i><sub>4</sub>(<i>q</i>)} has a complement in its algebraic normalizer. Also we consider the remaining twisted classical groups <sup>2</sup><i>A</i><sub><i>n</i></sub>(<i>q</i>) and <sup>2</sup><i>D</i><sub><i>n</i></sub>(<i>q</i>).</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-023-09721-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09721-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个有限的李型群,T 是群 G 的某个最大环。我们将结束对一个环 T 在其代数归一化 N (G, T) 中是否存在补集问题的研究。研究证明,群 G∈{G2(q), 2G2(q), 3D4(q)} 的任何最大环在其代数归一化中都有一个补集。此外,我们还考虑了其余的扭曲经典群 2An(q) 和 2Dn(q)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting of Normalizers of Maximal Tori in Finite Groups of Lie Type

Let G be a finite group of Lie type, and T some maximal torus of the group G. We bring to a close the study of the question of whether there exists a complement for a torus T in its algebraic normalizer N (G, T). It is proved that any maximal torus of a group G ∈ {G2(q), 2G2(q), 3D4(q)} has a complement in its algebraic normalizer. Also we consider the remaining twisted classical groups 2An(q) and 2Dn(q).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信