二阶布里奥-布凯特微分方程的显式单态解

IF 0.6 4区 数学 Q3 MATHEMATICS
{"title":"二阶布里奥-布凯特微分方程的显式单态解","authors":"","doi":"10.1007/s40315-023-00519-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, a special second-order Briot–Bouquet differential equation is studied. We construct explicit meromorphic solutions by the Kowalevski–Gambier method and a careful discussion. How we take into account the corresponding series at zeros, as opposed to the Laurent series at poles. This method is also useful for the study of many other non-linear differential equations.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"273 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Meromorphic Solutions of a Second Order Briot–Bouquet Differential Equation\",\"authors\":\"\",\"doi\":\"10.1007/s40315-023-00519-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, a special second-order Briot–Bouquet differential equation is studied. We construct explicit meromorphic solutions by the Kowalevski–Gambier method and a careful discussion. How we take into account the corresponding series at zeros, as opposed to the Laurent series at poles. This method is also useful for the study of many other non-linear differential equations.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"273 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-023-00519-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-023-00519-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了一个特殊的二阶 Briot-Bouquet 微分方程。我们通过 Kowalevski-Gambier 方法和仔细的讨论构建了显式分形解。我们如何考虑零点处的相应级数,而不是极点处的劳伦特级数。这种方法对研究许多其他非线性微分方程也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Meromorphic Solutions of a Second Order Briot–Bouquet Differential Equation

Abstract

In this paper, a special second-order Briot–Bouquet differential equation is studied. We construct explicit meromorphic solutions by the Kowalevski–Gambier method and a careful discussion. How we take into account the corresponding series at zeros, as opposed to the Laurent series at poles. This method is also useful for the study of many other non-linear differential equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信