一般二阶椭圆 PDE 的 AFEM 的准光学性

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Arnab Pal, Thirupathi Gudi
{"title":"一般二阶椭圆 PDE 的 AFEM 的准光学性","authors":"Arnab Pal, Thirupathi Gudi","doi":"10.1515/cmam-2023-0238","DOIUrl":null,"url":null,"abstract":"In this article, convergence and quasi-optimal rate of convergence of an adaptive finite element method (in short, AFEM) is shown for a general second-order non-selfadjoint elliptic PDE with convection term <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>b</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mi>d</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0238_eq_0388.png\" /> <jats:tex-math>{b\\in[L^{\\infty}(\\Omega)]^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and using minimal regularity of the dual problem, i.e., the solution of the dual problem has only <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0238_eq_0235.png\" /> <jats:tex-math>{H^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regularity, which extends the result [J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 2008, 5, 2524–2550]. The theoretical results are illustrated by numerical experiments.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"36 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Optimality of an AFEM for General Second Order Elliptic PDE\",\"authors\":\"Arnab Pal, Thirupathi Gudi\",\"doi\":\"10.1515/cmam-2023-0238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, convergence and quasi-optimal rate of convergence of an adaptive finite element method (in short, AFEM) is shown for a general second-order non-selfadjoint elliptic PDE with convection term <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>b</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> <m:mi>d</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0238_eq_0388.png\\\" /> <jats:tex-math>{b\\\\in[L^{\\\\infty}(\\\\Omega)]^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and using minimal regularity of the dual problem, i.e., the solution of the dual problem has only <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0238_eq_0235.png\\\" /> <jats:tex-math>{H^{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regularity, which extends the result [J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 2008, 5, 2524–2550]. The theoretical results are illustrated by numerical experiments.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0238\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0238","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文针对对流项 b∈ [ L ∞ ( Ω ) ] d {b\in[L^{\infty}(\Omega)]^{d}} 的一般二阶非自洽椭圆 PDE,并利用对偶问题的最小正则性(即、对偶问题的解只有 H 1 {H^{1}} -正则性,从而扩展了结果[J.M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer.Anal.46 2008, 5, 2524-2550].数值实验说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Optimality of an AFEM for General Second Order Elliptic PDE
In this article, convergence and quasi-optimal rate of convergence of an adaptive finite element method (in short, AFEM) is shown for a general second-order non-selfadjoint elliptic PDE with convection term b [ L ( Ω ) ] d {b\in[L^{\infty}(\Omega)]^{d}} and using minimal regularity of the dual problem, i.e., the solution of the dual problem has only H 1 {H^{1}} -regularity, which extends the result [J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 2008, 5, 2524–2550]. The theoretical results are illustrated by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信