André G. Daubermann, Valéria F. Lima, Alexander Erban, Joachim Kopka, Alisdair R. Fernie, Markus Schwarzländer, Leticia dos Anjos, Danilo M. Daloso
{"title":"13C 标记实验的多物种/细胞类型荟萃分析揭示了新的护卫细胞汇特征","authors":"André G. Daubermann, Valéria F. Lima, Alexander Erban, Joachim Kopka, Alisdair R. Fernie, Markus Schwarzländer, Leticia dos Anjos, Danilo M. Daloso","doi":"10.1007/s40626-023-00299-9","DOIUrl":null,"url":null,"abstract":"<p>The tricarboxylic acid (TCA) cycle is an important metabolic pathway to underpin stomatal movements, given that respiration is thought to be the main energy source for guard cell (GC) metabolism. However, it is still unclear how the metabolic fluxes throughout the TCA cycle and associated pathways are regulated in GCs. Here we used a <sup>13</sup>C-positional isotopomer approach and performed a multi-species/cell-types analysis based on previous <sup>13</sup>C-labelling studies carried out using Arabidopsis rosettes, maize leaves, Arabidopsis source and sink leaves, and isolated GCs from Arabidopsis and tobacco. We aimed to compare flux modes through the TCA cycle and associated pathways in GCs and leaves, which are mostly composed by mesophyll cells (MCs). Mesophyll cells showed high <sup>13</sup>C-enrichment into alanine and aspartate following provision of <sup>13</sup>CO<sub>2</sub>, whilst GCs and sink MCs showed high <sup>13</sup>C-incorporation into glutamate/glutamine following provision of <sup>13</sup>C-sucrose. Only GCs showed high <sup>13</sup>C-enrichment in the carbon 1 atom of glutamine, which is derived from phospho<i>enol</i>pyruvate carboxylase (PEPc)-mediated CO<sub>2</sub> assimilation. The PEPc-mediated <sup>13</sup>C-incorporation into malate was similar between GCs and MCs, but GCs had higher <sup>13</sup>C-enrichment and accumulation of fumarate than MCs. The metabolic fluxes throughout the TCA cycle of illuminated GCs resemble those of sink MCs, but with different contribution from PEPc, glycolysis and the TCA cycle to glutamate/glutamine synthesis. We further demonstrate that transamination reactions catalysed by alanine and aspartate amino transferases may support non-cyclic TCA flux modes in illuminated MCs.</p>","PeriodicalId":23038,"journal":{"name":"Theoretical and Experimental Plant Physiology","volume":"91 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel guard cell sink characteristics revealed by a multi-species/cell-types meta-analysis of 13C-labelling experiments\",\"authors\":\"André G. Daubermann, Valéria F. Lima, Alexander Erban, Joachim Kopka, Alisdair R. Fernie, Markus Schwarzländer, Leticia dos Anjos, Danilo M. Daloso\",\"doi\":\"10.1007/s40626-023-00299-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tricarboxylic acid (TCA) cycle is an important metabolic pathway to underpin stomatal movements, given that respiration is thought to be the main energy source for guard cell (GC) metabolism. However, it is still unclear how the metabolic fluxes throughout the TCA cycle and associated pathways are regulated in GCs. Here we used a <sup>13</sup>C-positional isotopomer approach and performed a multi-species/cell-types analysis based on previous <sup>13</sup>C-labelling studies carried out using Arabidopsis rosettes, maize leaves, Arabidopsis source and sink leaves, and isolated GCs from Arabidopsis and tobacco. We aimed to compare flux modes through the TCA cycle and associated pathways in GCs and leaves, which are mostly composed by mesophyll cells (MCs). Mesophyll cells showed high <sup>13</sup>C-enrichment into alanine and aspartate following provision of <sup>13</sup>CO<sub>2</sub>, whilst GCs and sink MCs showed high <sup>13</sup>C-incorporation into glutamate/glutamine following provision of <sup>13</sup>C-sucrose. Only GCs showed high <sup>13</sup>C-enrichment in the carbon 1 atom of glutamine, which is derived from phospho<i>enol</i>pyruvate carboxylase (PEPc)-mediated CO<sub>2</sub> assimilation. The PEPc-mediated <sup>13</sup>C-incorporation into malate was similar between GCs and MCs, but GCs had higher <sup>13</sup>C-enrichment and accumulation of fumarate than MCs. The metabolic fluxes throughout the TCA cycle of illuminated GCs resemble those of sink MCs, but with different contribution from PEPc, glycolysis and the TCA cycle to glutamate/glutamine synthesis. We further demonstrate that transamination reactions catalysed by alanine and aspartate amino transferases may support non-cyclic TCA flux modes in illuminated MCs.</p>\",\"PeriodicalId\":23038,\"journal\":{\"name\":\"Theoretical and Experimental Plant Physiology\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Experimental Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s40626-023-00299-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Experimental Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40626-023-00299-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Novel guard cell sink characteristics revealed by a multi-species/cell-types meta-analysis of 13C-labelling experiments
The tricarboxylic acid (TCA) cycle is an important metabolic pathway to underpin stomatal movements, given that respiration is thought to be the main energy source for guard cell (GC) metabolism. However, it is still unclear how the metabolic fluxes throughout the TCA cycle and associated pathways are regulated in GCs. Here we used a 13C-positional isotopomer approach and performed a multi-species/cell-types analysis based on previous 13C-labelling studies carried out using Arabidopsis rosettes, maize leaves, Arabidopsis source and sink leaves, and isolated GCs from Arabidopsis and tobacco. We aimed to compare flux modes through the TCA cycle and associated pathways in GCs and leaves, which are mostly composed by mesophyll cells (MCs). Mesophyll cells showed high 13C-enrichment into alanine and aspartate following provision of 13CO2, whilst GCs and sink MCs showed high 13C-incorporation into glutamate/glutamine following provision of 13C-sucrose. Only GCs showed high 13C-enrichment in the carbon 1 atom of glutamine, which is derived from phosphoenolpyruvate carboxylase (PEPc)-mediated CO2 assimilation. The PEPc-mediated 13C-incorporation into malate was similar between GCs and MCs, but GCs had higher 13C-enrichment and accumulation of fumarate than MCs. The metabolic fluxes throughout the TCA cycle of illuminated GCs resemble those of sink MCs, but with different contribution from PEPc, glycolysis and the TCA cycle to glutamate/glutamine synthesis. We further demonstrate that transamination reactions catalysed by alanine and aspartate amino transferases may support non-cyclic TCA flux modes in illuminated MCs.
期刊介绍:
The journal does not publish articles in taxonomy, anatomy, systematics and ecology unless they have a physiological approach related to the following sections:
Biochemical Processes: primary and secondary metabolism, and biochemistry;
Photobiology and Photosynthesis Processes;
Cell Biology;
Genes and Development;
Plant Molecular Biology;
Signaling and Response;
Plant Nutrition;
Growth and Differentiation: seed physiology, hormonal physiology and photomorphogenesis;
Post-Harvest Physiology;
Ecophysiology/Crop Physiology and Stress Physiology;
Applied Plant Ecology;
Plant-Microbe and Plant-Insect Interactions;
Instrumentation in Plant Physiology;
Education in Plant Physiology.