{"title":"基于词网的文本矢量化技术","authors":"D. Držík, Kirsten Šteflovič","doi":"10.2478/jazcas-2023-0048","DOIUrl":null,"url":null,"abstract":"Abstract The utilization of text vectorization techniques has become essential for numerous classification tasks in present-day natural language processing. Word embedding methods commonly used today, such as Word2Vec, GloVe, etc., are based on the semantic similarity of words. WordNet, as a lexical database of words, provides a rich source of semantic information. In our article, we propose a text vectorization technique using extended text data with the data augmentation method, specifically by replacing words with their synonyms obtained from WordNet. The results obtained from text classification tasks using multiple classifiers demonstrate that expanding the corpus with this method leads to improved vector representations of words.","PeriodicalId":262732,"journal":{"name":"Journal of Linguistics/Jazykovedný casopis","volume":"36 1","pages":"310 - 322"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Vectorization Techniques Based on Wordnet\",\"authors\":\"D. Držík, Kirsten Šteflovič\",\"doi\":\"10.2478/jazcas-2023-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The utilization of text vectorization techniques has become essential for numerous classification tasks in present-day natural language processing. Word embedding methods commonly used today, such as Word2Vec, GloVe, etc., are based on the semantic similarity of words. WordNet, as a lexical database of words, provides a rich source of semantic information. In our article, we propose a text vectorization technique using extended text data with the data augmentation method, specifically by replacing words with their synonyms obtained from WordNet. The results obtained from text classification tasks using multiple classifiers demonstrate that expanding the corpus with this method leads to improved vector representations of words.\",\"PeriodicalId\":262732,\"journal\":{\"name\":\"Journal of Linguistics/Jazykovedný casopis\",\"volume\":\"36 1\",\"pages\":\"310 - 322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Linguistics/Jazykovedný casopis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jazcas-2023-0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Linguistics/Jazykovedný casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jazcas-2023-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract The utilization of text vectorization techniques has become essential for numerous classification tasks in present-day natural language processing. Word embedding methods commonly used today, such as Word2Vec, GloVe, etc., are based on the semantic similarity of words. WordNet, as a lexical database of words, provides a rich source of semantic information. In our article, we propose a text vectorization technique using extended text data with the data augmentation method, specifically by replacing words with their synonyms obtained from WordNet. The results obtained from text classification tasks using multiple classifiers demonstrate that expanding the corpus with this method leads to improved vector representations of words.