基于词网的文本矢量化技术

D. Držík, Kirsten Šteflovič
{"title":"基于词网的文本矢量化技术","authors":"D. Držík, Kirsten Šteflovič","doi":"10.2478/jazcas-2023-0048","DOIUrl":null,"url":null,"abstract":"Abstract The utilization of text vectorization techniques has become essential for numerous classification tasks in present-day natural language processing. Word embedding methods commonly used today, such as Word2Vec, GloVe, etc., are based on the semantic similarity of words. WordNet, as a lexical database of words, provides a rich source of semantic information. In our article, we propose a text vectorization technique using extended text data with the data augmentation method, specifically by replacing words with their synonyms obtained from WordNet. The results obtained from text classification tasks using multiple classifiers demonstrate that expanding the corpus with this method leads to improved vector representations of words.","PeriodicalId":262732,"journal":{"name":"Journal of Linguistics/Jazykovedný casopis","volume":"36 1","pages":"310 - 322"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Vectorization Techniques Based on Wordnet\",\"authors\":\"D. Držík, Kirsten Šteflovič\",\"doi\":\"10.2478/jazcas-2023-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The utilization of text vectorization techniques has become essential for numerous classification tasks in present-day natural language processing. Word embedding methods commonly used today, such as Word2Vec, GloVe, etc., are based on the semantic similarity of words. WordNet, as a lexical database of words, provides a rich source of semantic information. In our article, we propose a text vectorization technique using extended text data with the data augmentation method, specifically by replacing words with their synonyms obtained from WordNet. The results obtained from text classification tasks using multiple classifiers demonstrate that expanding the corpus with this method leads to improved vector representations of words.\",\"PeriodicalId\":262732,\"journal\":{\"name\":\"Journal of Linguistics/Jazykovedný casopis\",\"volume\":\"36 1\",\"pages\":\"310 - 322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Linguistics/Jazykovedný casopis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jazcas-2023-0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Linguistics/Jazykovedný casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jazcas-2023-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在当今的自然语言处理中,文本矢量化技术已成为众多分类任务的关键。目前常用的词嵌入方法,如 Word2Vec、GloVe 等,都是基于词的语义相似性。WordNet 作为词汇数据库,提供了丰富的语义信息。在我们的文章中,我们提出了一种使用扩展文本数据的文本矢量化技术,该技术采用了数据增强方法,具体来说,就是用从 WordNet 中获得的同义词替换单词。使用多种分类器进行文本分类任务所获得的结果表明,使用这种方法扩展语料库可以改进词语的向量表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Vectorization Techniques Based on Wordnet
Abstract The utilization of text vectorization techniques has become essential for numerous classification tasks in present-day natural language processing. Word embedding methods commonly used today, such as Word2Vec, GloVe, etc., are based on the semantic similarity of words. WordNet, as a lexical database of words, provides a rich source of semantic information. In our article, we propose a text vectorization technique using extended text data with the data augmentation method, specifically by replacing words with their synonyms obtained from WordNet. The results obtained from text classification tasks using multiple classifiers demonstrate that expanding the corpus with this method leads to improved vector representations of words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信