{"title":"基于细胞的异构测量:一种评估形态发生复杂性的方法","authors":"Ali Tarihi, Mojtaba Tarihi, T. Tiraihi","doi":"10.15302/j-qb-022-0319","DOIUrl":null,"url":null,"abstract":"Morphogenesis is a complex process in a developing animal at the organ, cellular and molecular levels. In this investigation, allometry at the cellular level was evaluated.Geometric information, including the time‐lapse Cartesian coordinates of each cell’s center, was used for calculating the allometric coefficients. A zero‐centroaxial skew‐symmetrical matrix ( CSSM), was generated and used for constructing another square matrix (basic square matrix: BSM), then the determinant of BSM was calculated ( d). The logarithms of absolute d (Lad) of cell group at different stages of development were plotted for all of the cells in a range of development stages; the slope of the regression line was estimated then used as the allometric coefficient. Moreover, the lineage growth rate (LGR) was also calculated by plotting the Lad against the logarithm of the time. The complexity index at each stage was calculated. The method was tested on a developing Caenorhabditis elegans embryo.We explored two out of the four first generated blastomeres in C. elegans embryo. The ABp and EMS lineages show that the allometric coefficient of ABp was higher than that of EMS, which was consistent with the complexity index as well as LGR.The conclusion of this study is that the complexity of the differentiating cells in a developing embryo can be evaluated by allometric scaling based on the data derived from the Cartesian coordinates of the cells at different stages of development.","PeriodicalId":45660,"journal":{"name":"Quantitative Biology","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell‐based allometry: an approach for evaluation of complexity in morphogenesis\",\"authors\":\"Ali Tarihi, Mojtaba Tarihi, T. Tiraihi\",\"doi\":\"10.15302/j-qb-022-0319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphogenesis is a complex process in a developing animal at the organ, cellular and molecular levels. In this investigation, allometry at the cellular level was evaluated.Geometric information, including the time‐lapse Cartesian coordinates of each cell’s center, was used for calculating the allometric coefficients. A zero‐centroaxial skew‐symmetrical matrix ( CSSM), was generated and used for constructing another square matrix (basic square matrix: BSM), then the determinant of BSM was calculated ( d). The logarithms of absolute d (Lad) of cell group at different stages of development were plotted for all of the cells in a range of development stages; the slope of the regression line was estimated then used as the allometric coefficient. Moreover, the lineage growth rate (LGR) was also calculated by plotting the Lad against the logarithm of the time. The complexity index at each stage was calculated. The method was tested on a developing Caenorhabditis elegans embryo.We explored two out of the four first generated blastomeres in C. elegans embryo. The ABp and EMS lineages show that the allometric coefficient of ABp was higher than that of EMS, which was consistent with the complexity index as well as LGR.The conclusion of this study is that the complexity of the differentiating cells in a developing embryo can be evaluated by allometric scaling based on the data derived from the Cartesian coordinates of the cells at different stages of development.\",\"PeriodicalId\":45660,\"journal\":{\"name\":\"Quantitative Biology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15302/j-qb-022-0319\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15302/j-qb-022-0319","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Cell‐based allometry: an approach for evaluation of complexity in morphogenesis
Morphogenesis is a complex process in a developing animal at the organ, cellular and molecular levels. In this investigation, allometry at the cellular level was evaluated.Geometric information, including the time‐lapse Cartesian coordinates of each cell’s center, was used for calculating the allometric coefficients. A zero‐centroaxial skew‐symmetrical matrix ( CSSM), was generated and used for constructing another square matrix (basic square matrix: BSM), then the determinant of BSM was calculated ( d). The logarithms of absolute d (Lad) of cell group at different stages of development were plotted for all of the cells in a range of development stages; the slope of the regression line was estimated then used as the allometric coefficient. Moreover, the lineage growth rate (LGR) was also calculated by plotting the Lad against the logarithm of the time. The complexity index at each stage was calculated. The method was tested on a developing Caenorhabditis elegans embryo.We explored two out of the four first generated blastomeres in C. elegans embryo. The ABp and EMS lineages show that the allometric coefficient of ABp was higher than that of EMS, which was consistent with the complexity index as well as LGR.The conclusion of this study is that the complexity of the differentiating cells in a developing embryo can be evaluated by allometric scaling based on the data derived from the Cartesian coordinates of the cells at different stages of development.
期刊介绍:
Quantitative Biology is an interdisciplinary journal that focuses on original research that uses quantitative approaches and technologies to analyze and integrate biological systems, construct and model engineered life systems, and gain a deeper understanding of the life sciences. It aims to provide a platform for not only the analysis but also the integration and construction of biological systems. It is a quarterly journal seeking to provide an inter- and multi-disciplinary forum for a broad blend of peer-reviewed academic papers in order to promote rapid communication and exchange between scientists in the East and the West. The content of Quantitative Biology will mainly focus on the two broad and related areas: ·bioinformatics and computational biology, which focuses on dealing with information technologies and computational methodologies that can efficiently and accurately manipulate –omics data and transform molecular information into biological knowledge. ·systems and synthetic biology, which focuses on complex interactions in biological systems and the emergent functional properties, and on the design and construction of new biological functions and systems. Its goal is to reflect the significant advances made in quantitatively investigating and modeling both natural and engineered life systems at the molecular and higher levels. The journal particularly encourages original papers that link novel theory with cutting-edge experiments, especially in the newly emerging and multi-disciplinary areas of research. The journal also welcomes high-quality reviews and perspective articles.