用于 Python 基本预处理任务的斯洛伐克语言模型

D. Hládek, Maros Harahus, J. Staš, Matus Pleva
{"title":"用于 Python 基本预处理任务的斯洛伐克语言模型","authors":"D. Hládek, Maros Harahus, J. Staš, Matus Pleva","doi":"10.2478/jazcas-2023-0049","DOIUrl":null,"url":null,"abstract":"Abstract We propose a Slovak language model for the spaCy library in Python. These models are easy-to-use for basic natural language processing tasks in a single package. The package contains several components for basic preprocessing tasks, such as tokenization, sentence boundary detection, syntactic parsing, lemmatization, named entity recognition, morphology analysis, and word vectors. It is based on the state-of-the-art monolingual SlovakBERT model. Named entity recognition is trained on a separate, publicly available WikiAnn database. The other statistical classifiers use a Slovak Dependency Treebank corpus. Morphological tags are compatible with the conventions of the Slovak National Corpus. The part of speech tags use conventions of the Universal Dependencies framework. We trained a separate word vector model on a web-based corpus. The training uses fastText with Floret modification. We present a series of experiments that confirm that the model performs similarly to other languages for all tasks. Training scripts and data are publicly available.","PeriodicalId":262732,"journal":{"name":"Journal of Linguistics/Jazykovedný casopis","volume":"212 1","pages":"323 - 332"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slovak Language Models for Basic Preprocessing Tasks in Python\",\"authors\":\"D. Hládek, Maros Harahus, J. Staš, Matus Pleva\",\"doi\":\"10.2478/jazcas-2023-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a Slovak language model for the spaCy library in Python. These models are easy-to-use for basic natural language processing tasks in a single package. The package contains several components for basic preprocessing tasks, such as tokenization, sentence boundary detection, syntactic parsing, lemmatization, named entity recognition, morphology analysis, and word vectors. It is based on the state-of-the-art monolingual SlovakBERT model. Named entity recognition is trained on a separate, publicly available WikiAnn database. The other statistical classifiers use a Slovak Dependency Treebank corpus. Morphological tags are compatible with the conventions of the Slovak National Corpus. The part of speech tags use conventions of the Universal Dependencies framework. We trained a separate word vector model on a web-based corpus. The training uses fastText with Floret modification. We present a series of experiments that confirm that the model performs similarly to other languages for all tasks. Training scripts and data are publicly available.\",\"PeriodicalId\":262732,\"journal\":{\"name\":\"Journal of Linguistics/Jazykovedný casopis\",\"volume\":\"212 1\",\"pages\":\"323 - 332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Linguistics/Jazykovedný casopis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jazcas-2023-0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Linguistics/Jazykovedný casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jazcas-2023-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们为 Python 中的 spaCy 库提出了一个斯洛伐克语模型。这些模型易于使用,只需一个软件包即可完成基本的自然语言处理任务。该软件包包含用于基本预处理任务的多个组件,如标记化、句子边界检测、句法分析、词法化、命名实体识别、词形分析和词向量。它以最先进的斯洛伐克语单语 BERT 模型为基础。命名实体识别是在一个单独的、公开的 WikiAnn 数据库上进行训练的。其他统计分类器则使用斯洛伐克依存树库语料库。词形标签与斯洛伐克国家语料库的约定相兼容。语篇标签使用通用依赖关系框架的约定。我们在基于网络的语料库上训练了一个单独的词向量模型。训练使用了经过 Floret 修改的 fastText。我们进行了一系列实验,证实该模型在所有任务中的表现与其他语言相似。我们公开了训练脚本和数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slovak Language Models for Basic Preprocessing Tasks in Python
Abstract We propose a Slovak language model for the spaCy library in Python. These models are easy-to-use for basic natural language processing tasks in a single package. The package contains several components for basic preprocessing tasks, such as tokenization, sentence boundary detection, syntactic parsing, lemmatization, named entity recognition, morphology analysis, and word vectors. It is based on the state-of-the-art monolingual SlovakBERT model. Named entity recognition is trained on a separate, publicly available WikiAnn database. The other statistical classifiers use a Slovak Dependency Treebank corpus. Morphological tags are compatible with the conventions of the Slovak National Corpus. The part of speech tags use conventions of the Universal Dependencies framework. We trained a separate word vector model on a web-based corpus. The training uses fastText with Floret modification. We present a series of experiments that confirm that the model performs similarly to other languages for all tasks. Training scripts and data are publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信