{"title":"利用 SCAPS-1D 仿真探索柔性 Perovskite 太阳能电池的效率和设计优化","authors":"Elif Damgaci, Emre Kartal, Ayşe Seyhan","doi":"10.55696/ejset.1303146","DOIUrl":null,"url":null,"abstract":"This research focuses on using SCAPS-1D software to design and simulate efficient flexible perovskite solar cells. The study aims to optimize design parameters, gain a deeper understanding of the underlying physics, and obtain valuable insights into electrical characteristics. The device architecture includes key components like PET/ITO substrate, TiO2 ETL, CH3NH3SnI3 absorber, CuSCN HTL, and Au electrode. By optimizing the absorber thickness (600 nm) and temperature (300 K), performance and efficiency of the cell were improved. Investigation of different doping concentrations at 300 K for a fixed thickness revealed an efficiency of 26.98% at 600 nm. The highest efficiency of 31.44% was achieved with a doping concentration of 1E+21. This research showcases the potential of flexible perovskite solar cells for lightweight and versatile applications, emphasizing their significance in the field.","PeriodicalId":143980,"journal":{"name":"Eurasian Journal of Science Engineering and Technology","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Efficiency and Design Optimization of Flexible Perovskite Solar Cells using SCAPS-1D Simulation\",\"authors\":\"Elif Damgaci, Emre Kartal, Ayşe Seyhan\",\"doi\":\"10.55696/ejset.1303146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on using SCAPS-1D software to design and simulate efficient flexible perovskite solar cells. The study aims to optimize design parameters, gain a deeper understanding of the underlying physics, and obtain valuable insights into electrical characteristics. The device architecture includes key components like PET/ITO substrate, TiO2 ETL, CH3NH3SnI3 absorber, CuSCN HTL, and Au electrode. By optimizing the absorber thickness (600 nm) and temperature (300 K), performance and efficiency of the cell were improved. Investigation of different doping concentrations at 300 K for a fixed thickness revealed an efficiency of 26.98% at 600 nm. The highest efficiency of 31.44% was achieved with a doping concentration of 1E+21. This research showcases the potential of flexible perovskite solar cells for lightweight and versatile applications, emphasizing their significance in the field.\",\"PeriodicalId\":143980,\"journal\":{\"name\":\"Eurasian Journal of Science Engineering and Technology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Science Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55696/ejset.1303146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Science Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55696/ejset.1303146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Efficiency and Design Optimization of Flexible Perovskite Solar Cells using SCAPS-1D Simulation
This research focuses on using SCAPS-1D software to design and simulate efficient flexible perovskite solar cells. The study aims to optimize design parameters, gain a deeper understanding of the underlying physics, and obtain valuable insights into electrical characteristics. The device architecture includes key components like PET/ITO substrate, TiO2 ETL, CH3NH3SnI3 absorber, CuSCN HTL, and Au electrode. By optimizing the absorber thickness (600 nm) and temperature (300 K), performance and efficiency of the cell were improved. Investigation of different doping concentrations at 300 K for a fixed thickness revealed an efficiency of 26.98% at 600 nm. The highest efficiency of 31.44% was achieved with a doping concentration of 1E+21. This research showcases the potential of flexible perovskite solar cells for lightweight and versatile applications, emphasizing their significance in the field.