公度量空间中的纳吉型不等式及其若干应用

IF 1 Q1 MATHEMATICS
V. Babenko, V. Babenko, O. Kovalenko, N. Parfinovych
{"title":"公度量空间中的纳吉型不等式及其若干应用","authors":"V. Babenko, V. Babenko, O. Kovalenko, N. Parfinovych","doi":"10.15330/cmp.15.2.563-575","DOIUrl":null,"url":null,"abstract":"We obtain a sharp Nagy type inequality in a metric space $(X,\\rho)$ with measure $\\mu$ that estimates the uniform norm of a function using its $\\|\\cdot\\|_{H^\\omega}$-norm determined by a modulus of continuity $\\omega$, and a seminorm that is defined on a space of locally integrable functions. We consider charges $\\nu$ that are defined on the set of $\\mu$-measurable subsets of $X$ and are absolutely continuous with respect to $\\mu$. Using the obtained Nagy type inequality, we prove a sharp Landau-Kolmogorov type inequality that estimates the uniform norm of a Radon-Nikodym derivative of a charge via a $\\|\\cdot\\|_{H^\\omega}$-norm of this derivative, and a seminorm defined on the space of such charges. We also prove a sharp inequality for a hypersingular integral operator. In the case $X={\\mathbb R}_+^m\\times {\\mathbb R}^{d-m}$, $0\\le m\\le d$, we obtain inequalities that estimate the uniform norm of a mixed derivative of a function using the uniform norm of the function and the $\\|\\cdot\\|_{H^\\omega}$-norm of its mixed derivative.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nagy type inequalities in metric measure spaces and some applications\",\"authors\":\"V. Babenko, V. Babenko, O. Kovalenko, N. Parfinovych\",\"doi\":\"10.15330/cmp.15.2.563-575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a sharp Nagy type inequality in a metric space $(X,\\\\rho)$ with measure $\\\\mu$ that estimates the uniform norm of a function using its $\\\\|\\\\cdot\\\\|_{H^\\\\omega}$-norm determined by a modulus of continuity $\\\\omega$, and a seminorm that is defined on a space of locally integrable functions. We consider charges $\\\\nu$ that are defined on the set of $\\\\mu$-measurable subsets of $X$ and are absolutely continuous with respect to $\\\\mu$. Using the obtained Nagy type inequality, we prove a sharp Landau-Kolmogorov type inequality that estimates the uniform norm of a Radon-Nikodym derivative of a charge via a $\\\\|\\\\cdot\\\\|_{H^\\\\omega}$-norm of this derivative, and a seminorm defined on the space of such charges. We also prove a sharp inequality for a hypersingular integral operator. In the case $X={\\\\mathbb R}_+^m\\\\times {\\\\mathbb R}^{d-m}$, $0\\\\le m\\\\le d$, we obtain inequalities that estimate the uniform norm of a mixed derivative of a function using the uniform norm of the function and the $\\\\|\\\\cdot\\\\|_{H^\\\\omega}$-norm of its mixed derivative.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.563-575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.563-575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在度量为$\mu$的度量空间$(X,\rho)$中得到了一个尖锐的纳吉型不等式,该不等式使用由连续性模量$\omega$决定的函数的$\|\cdot\|_{H^\omega}$正态和定义在局部可积分函数空间上的半正态来估计函数的均匀正态。我们考虑定义在 $\mu$-measurable subsets of $X$ 的集合上、相对于 $\mu$ 绝对连续的电荷 $\nu$。利用所得到的纳吉型不等式,我们证明了一个尖锐的兰道-科尔莫戈罗夫型不等式,它通过导数的 $\|\cdot\|_{H^\omega}$ 准则和定义在此类电荷空间上的半准则来估计电荷的拉顿-尼科迪姆导数的均匀准则。我们还证明了超积分算子的一个尖锐不等式。在 $X={mathbb R}_+^m/times{/mathbb R}^{d-m}$,$0le m\le d$ 的情况下,我们得到了不等式,利用函数的均匀法和函数混合导数的 $\|\cdot\|_{H^\omega}$ 规范来估计函数混合导数的均匀法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nagy type inequalities in metric measure spaces and some applications
We obtain a sharp Nagy type inequality in a metric space $(X,\rho)$ with measure $\mu$ that estimates the uniform norm of a function using its $\|\cdot\|_{H^\omega}$-norm determined by a modulus of continuity $\omega$, and a seminorm that is defined on a space of locally integrable functions. We consider charges $\nu$ that are defined on the set of $\mu$-measurable subsets of $X$ and are absolutely continuous with respect to $\mu$. Using the obtained Nagy type inequality, we prove a sharp Landau-Kolmogorov type inequality that estimates the uniform norm of a Radon-Nikodym derivative of a charge via a $\|\cdot\|_{H^\omega}$-norm of this derivative, and a seminorm defined on the space of such charges. We also prove a sharp inequality for a hypersingular integral operator. In the case $X={\mathbb R}_+^m\times {\mathbb R}^{d-m}$, $0\le m\le d$, we obtain inequalities that estimate the uniform norm of a mixed derivative of a function using the uniform norm of the function and the $\|\cdot\|_{H^\omega}$-norm of its mixed derivative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信