外围度量的极值界限

IF 1 Q1 MATHEMATICS
L. Tang
{"title":"外围度量的极值界限","authors":"L. Tang","doi":"10.47443/dml.2023.148","DOIUrl":null,"url":null,"abstract":"We investigate several measures of peripherality for vertices and edges in networks. We improve asymptotic bounds on the maximum value achieved by edge peripherality, edge sum peripherality, and the Trinajsti\\'c index over $n$ vertex graphs. We also prove similar results on the maxima over $n$-vertex bipartite graphs, trees, and graphs with a fixed diameter. Finally, we refute two conjectures of Furtula, the first on necessary conditions for minimizing the Trinajsti\\'c index and the second about maximizing the Trinajsti\\'c index.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal bounds on peripherality measures\",\"authors\":\"L. Tang\",\"doi\":\"10.47443/dml.2023.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate several measures of peripherality for vertices and edges in networks. We improve asymptotic bounds on the maximum value achieved by edge peripherality, edge sum peripherality, and the Trinajsti\\\\'c index over $n$ vertex graphs. We also prove similar results on the maxima over $n$-vertex bipartite graphs, trees, and graphs with a fixed diameter. Finally, we refute two conjectures of Furtula, the first on necessary conditions for minimizing the Trinajsti\\\\'c index and the second about maximizing the Trinajsti\\\\'c index.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了网络中顶点和边的几种外围度量。我们改进了在 $n$ 顶点图中,边外围性、边外围性总和以及 Trinajsti\'c 指数所达到的最大值的渐进约束。我们还证明了关于 $n$ 顶点双方形图、树和具有固定直径的图的最大值的类似结果。最后,我们反驳了 Furtula 的两个猜想,第一个是关于 Trinajsti\'c index 最小化的必要条件,第二个是关于 Trinajsti\'c index 最大化的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal bounds on peripherality measures
We investigate several measures of peripherality for vertices and edges in networks. We improve asymptotic bounds on the maximum value achieved by edge peripherality, edge sum peripherality, and the Trinajsti\'c index over $n$ vertex graphs. We also prove similar results on the maxima over $n$-vertex bipartite graphs, trees, and graphs with a fixed diameter. Finally, we refute two conjectures of Furtula, the first on necessary conditions for minimizing the Trinajsti\'c index and the second about maximizing the Trinajsti\'c index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信