J. McEwen, T. Liaudat, Matthew Alexander Price, Xiaohao Cai, M. Pereyra
{"title":"面向物理科学家的近端嵌套采样与数据驱动先验","authors":"J. McEwen, T. Liaudat, Matthew Alexander Price, Xiaohao Cai, M. Pereyra","doi":"10.3390/psf2023009013","DOIUrl":null,"url":null,"abstract":"Proximal nested sampling was introduced recently to open up Bayesian model selection for high-dimensional problems such as computational imaging. The framework is suitable for models with a log-convex likelihood, which are ubiquitous in the imaging sciences. The purpose of this article is two-fold. First, we review proximal nested sampling in a pedagogical manner in an attempt to elucidate the framework for physical scientists. Second, we show how proximal nested sampling can be extended in an empirical Bayes setting to support data-driven priors, such as deep neural networks learned from training data.","PeriodicalId":506244,"journal":{"name":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proximal Nested Sampling with Data-Driven Priors for Physical Scientists\",\"authors\":\"J. McEwen, T. Liaudat, Matthew Alexander Price, Xiaohao Cai, M. Pereyra\",\"doi\":\"10.3390/psf2023009013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proximal nested sampling was introduced recently to open up Bayesian model selection for high-dimensional problems such as computational imaging. The framework is suitable for models with a log-convex likelihood, which are ubiquitous in the imaging sciences. The purpose of this article is two-fold. First, we review proximal nested sampling in a pedagogical manner in an attempt to elucidate the framework for physical scientists. Second, we show how proximal nested sampling can be extended in an empirical Bayes setting to support data-driven priors, such as deep neural networks learned from training data.\",\"PeriodicalId\":506244,\"journal\":{\"name\":\"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/psf2023009013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psf2023009013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proximal Nested Sampling with Data-Driven Priors for Physical Scientists
Proximal nested sampling was introduced recently to open up Bayesian model selection for high-dimensional problems such as computational imaging. The framework is suitable for models with a log-convex likelihood, which are ubiquitous in the imaging sciences. The purpose of this article is two-fold. First, we review proximal nested sampling in a pedagogical manner in an attempt to elucidate the framework for physical scientists. Second, we show how proximal nested sampling can be extended in an empirical Bayes setting to support data-driven priors, such as deep neural networks learned from training data.