利用深度学习从最终观测结果识别抛物线偏微分方程中的参数

Khalid Atif, El-Hassan Essouf, Khadija Rizki
{"title":"利用深度学习从最终观测结果识别抛物线偏微分方程中的参数","authors":"Khalid Atif, El-Hassan Essouf, Khadija Rizki","doi":"10.30538/psrp-oma2023.0120","DOIUrl":null,"url":null,"abstract":"In this work, we propose a deep learning approach for identifying parameters (initial condition, a coefficient in the diffusion term and source function) in parabolic partial differential equations (PDEs) from scattered final observations in space and noisy a priori knowledge. In Particular, we approximate the unknown solution and parameters by four deep neural networks trained to satisfy the differential operator, boundary conditions, a priori knowledge and observations. The proposed algorithm is mesh-free, which is key since meshes become infeasible in higher dimensions due to the number of grid points explosion. Instead of forming a mesh, the neural networks are trained on batches of randomly sampled time and space points. This work is devoted to the identification of several parameters of PDEs at the same time. The classical methods require a total a priori knowledge which is not feasible. While they cannot solve this inverse problem given such partial data, the deep learning method allows them to resolve it using minimal a priori knowledge.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of parameters in parabolic partial differential equation from final observations using deep learning\",\"authors\":\"Khalid Atif, El-Hassan Essouf, Khadija Rizki\",\"doi\":\"10.30538/psrp-oma2023.0120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a deep learning approach for identifying parameters (initial condition, a coefficient in the diffusion term and source function) in parabolic partial differential equations (PDEs) from scattered final observations in space and noisy a priori knowledge. In Particular, we approximate the unknown solution and parameters by four deep neural networks trained to satisfy the differential operator, boundary conditions, a priori knowledge and observations. The proposed algorithm is mesh-free, which is key since meshes become infeasible in higher dimensions due to the number of grid points explosion. Instead of forming a mesh, the neural networks are trained on batches of randomly sampled time and space points. This work is devoted to the identification of several parameters of PDEs at the same time. The classical methods require a total a priori knowledge which is not feasible. While they cannot solve this inverse problem given such partial data, the deep learning method allows them to resolve it using minimal a priori knowledge.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2023.0120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2023.0120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种深度学习方法,用于从空间分散的最终观测数据和嘈杂的先验知识中识别抛物线偏微分方程(PDE)中的参数(初始条件、扩散项系数和源函数)。具体而言,我们通过四个经过训练的深度神经网络来近似未知解和参数,以满足微分算子、边界条件、先验知识和观测结果的要求。所提出的算法是无网格的,这一点很关键,因为在更高的维度上,由于网格点数量爆炸,网格变得不可行。神经网络没有形成网格,而是在随机采样的时间和空间点上进行训练。这项工作致力于同时识别 PDE 的多个参数。经典方法需要全部先验知识,这并不可行。虽然它们无法解决这种部分数据下的逆问题,但深度学习方法允许它们使用最少的先验知识来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of parameters in parabolic partial differential equation from final observations using deep learning
In this work, we propose a deep learning approach for identifying parameters (initial condition, a coefficient in the diffusion term and source function) in parabolic partial differential equations (PDEs) from scattered final observations in space and noisy a priori knowledge. In Particular, we approximate the unknown solution and parameters by four deep neural networks trained to satisfy the differential operator, boundary conditions, a priori knowledge and observations. The proposed algorithm is mesh-free, which is key since meshes become infeasible in higher dimensions due to the number of grid points explosion. Instead of forming a mesh, the neural networks are trained on batches of randomly sampled time and space points. This work is devoted to the identification of several parameters of PDEs at the same time. The classical methods require a total a priori knowledge which is not feasible. While they cannot solve this inverse problem given such partial data, the deep learning method allows them to resolve it using minimal a priori knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信