{"title":"保留矩阵张量乘(p,k)规范的线性映射","authors":"Zejun Huang, Nung-Sing Sze, Run Zheng","doi":"10.4153/s0008414x23000858","DOIUrl":null,"url":null,"abstract":"Let $m,n\\ge 2$ be integers. Denote by $M_n$ the set of $n\\times n$ complex matrices. Let $\\|\\cdot\\|_{(p,k)}$ be the $(p,k)$ norm on $M_{mn}$ with $1\\leq k\\leq mn$ and $2<p<\\infty$. We show that a linear map $\\phi:M_{mn}\\rightarrow M_{mn}$ satisfies $$\\|\\phi(A\\otimes B)\\|_{(p,k)}=\\|A\\otimes B\\|_{(p,k)} {\\rm\\quad for~ all\\quad}A\\in M_m {\\rm ~and ~}B\\in M_n$$ if and only if there exist unitary matrices $U,V\\in M_{mn}$ such that $$\\phi(A\\otimes B)=U(\\varphi_1(A)\\otimes \\varphi_2(B))V {\\rm\\quad for~ all\\quad}A\\in M_m {\\rm~ and~ }B\\in M_n,$$ where $\\varphi_s$ is the identity map or the transposition map $X\\to X^T$ for $s=1,2$. The result is also extended to multipartite systems.","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear maps preserving (p, k) norms of tensor products of matrices\",\"authors\":\"Zejun Huang, Nung-Sing Sze, Run Zheng\",\"doi\":\"10.4153/s0008414x23000858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $m,n\\\\ge 2$ be integers. Denote by $M_n$ the set of $n\\\\times n$ complex matrices. Let $\\\\|\\\\cdot\\\\|_{(p,k)}$ be the $(p,k)$ norm on $M_{mn}$ with $1\\\\leq k\\\\leq mn$ and $2<p<\\\\infty$. We show that a linear map $\\\\phi:M_{mn}\\\\rightarrow M_{mn}$ satisfies $$\\\\|\\\\phi(A\\\\otimes B)\\\\|_{(p,k)}=\\\\|A\\\\otimes B\\\\|_{(p,k)} {\\\\rm\\\\quad for~ all\\\\quad}A\\\\in M_m {\\\\rm ~and ~}B\\\\in M_n$$ if and only if there exist unitary matrices $U,V\\\\in M_{mn}$ such that $$\\\\phi(A\\\\otimes B)=U(\\\\varphi_1(A)\\\\otimes \\\\varphi_2(B))V {\\\\rm\\\\quad for~ all\\\\quad}A\\\\in M_m {\\\\rm~ and~ }B\\\\in M_n,$$ where $\\\\varphi_s$ is the identity map or the transposition map $X\\\\to X^T$ for $s=1,2$. The result is also extended to multipartite systems.\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear maps preserving (p, k) norms of tensor products of matrices
Let $m,n\ge 2$ be integers. Denote by $M_n$ the set of $n\times n$ complex matrices. Let $\|\cdot\|_{(p,k)}$ be the $(p,k)$ norm on $M_{mn}$ with $1\leq k\leq mn$ and $2