将最短路径问题推广到具有多个边成本估计值的图形(学生摘要)

Eyal Weiss
{"title":"将最短路径问题推广到具有多个边成本估计值的图形(学生摘要)","authors":"Eyal Weiss","doi":"10.1609/socs.v16i1.27316","DOIUrl":null,"url":null,"abstract":"The shortest path problem in graphs is a cornerstone of AI theory and applications. Existing algorithms generally ignore edge weight computation time. In this paper we present a generalized framework for weighted directed graphs, where edge weight can be computed (estimated) multiple times, at increasing accuracy and run-time expense. This raises a generalized shortest path problem that optimizes different aspects of path cost and its uncertainty. We describe in high-level a complete anytime algorithm for the generalized problem and discuss possible future extensions.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"5 1","pages":"206-207"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of the Shortest Path Problem to Graphs with Multiple Edge-Cost Estimates (Student Abstract)\",\"authors\":\"Eyal Weiss\",\"doi\":\"10.1609/socs.v16i1.27316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shortest path problem in graphs is a cornerstone of AI theory and applications. Existing algorithms generally ignore edge weight computation time. In this paper we present a generalized framework for weighted directed graphs, where edge weight can be computed (estimated) multiple times, at increasing accuracy and run-time expense. This raises a generalized shortest path problem that optimizes different aspects of path cost and its uncertainty. We describe in high-level a complete anytime algorithm for the generalized problem and discuss possible future extensions.\",\"PeriodicalId\":425645,\"journal\":{\"name\":\"Symposium on Combinatorial Search\",\"volume\":\"5 1\",\"pages\":\"206-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Combinatorial Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/socs.v16i1.27316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图中的最短路径问题是人工智能理论和应用的基石。现有算法通常忽略边权重的计算时间。在本文中,我们提出了一个适用于有向加权图的广义框架,在这个框架中,边权重可以多次计算(估计),精度和运行时间成本都会增加。这就提出了一个广义的最短路径问题,它可以优化路径成本及其不确定性的不同方面。我们高水平地描述了广义问题的完整随时算法,并讨论了未来可能的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalization of the Shortest Path Problem to Graphs with Multiple Edge-Cost Estimates (Student Abstract)
The shortest path problem in graphs is a cornerstone of AI theory and applications. Existing algorithms generally ignore edge weight computation time. In this paper we present a generalized framework for weighted directed graphs, where edge weight can be computed (estimated) multiple times, at increasing accuracy and run-time expense. This raises a generalized shortest path problem that optimizes different aspects of path cost and its uncertainty. We describe in high-level a complete anytime algorithm for the generalized problem and discuss possible future extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信