{"title":"关于树的顶点不规则总标注的说明","authors":"Faisal Susanto, R. Simanjuntak, E. Baskoro","doi":"10.19184/ijc.2023.7.1.1","DOIUrl":null,"url":null,"abstract":"The total vertex irregularity strength of a graph <em>G=</em>(<em>V,E</em>) is the minimum integer <em>k</em> so that there is a mapping from <em>V ∪ E</em> to the set {<em>1,2,...,k</em>} so that the vertex-weights (i.e., the sum of labels of a vertex together with the edges incident to it) are all distinct. In this note, we present a new sufficient condition for a tree to have total vertex irregularity strength ⌈(<em>n</em><sub>1</sub><em>+1</em>)<em>/2</em>⌉<em><em>, where <em>n<sub>1</sub></em> is the number of vertices of degree one in the tree.</em></em>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on vertex irregular total labeling of trees\",\"authors\":\"Faisal Susanto, R. Simanjuntak, E. Baskoro\",\"doi\":\"10.19184/ijc.2023.7.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total vertex irregularity strength of a graph <em>G=</em>(<em>V,E</em>) is the minimum integer <em>k</em> so that there is a mapping from <em>V ∪ E</em> to the set {<em>1,2,...,k</em>} so that the vertex-weights (i.e., the sum of labels of a vertex together with the edges incident to it) are all distinct. In this note, we present a new sufficient condition for a tree to have total vertex irregularity strength ⌈(<em>n</em><sub>1</sub><em>+1</em>)<em>/2</em>⌉<em><em>, where <em>n<sub>1</sub></em> is the number of vertices of degree one in the tree.</em></em>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2023.7.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2023.7.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on vertex irregular total labeling of trees
The total vertex irregularity strength of a graph G=(V,E) is the minimum integer k so that there is a mapping from V ∪ E to the set {1,2,...,k} so that the vertex-weights (i.e., the sum of labels of a vertex together with the edges incident to it) are all distinct. In this note, we present a new sufficient condition for a tree to have total vertex irregularity strength ⌈(n1+1)/2⌉, where n1 is the number of vertices of degree one in the tree.