关于树的顶点不规则总标注的说明

Faisal Susanto, R. Simanjuntak, E. Baskoro
{"title":"关于树的顶点不规则总标注的说明","authors":"Faisal Susanto, R. Simanjuntak, E. Baskoro","doi":"10.19184/ijc.2023.7.1.1","DOIUrl":null,"url":null,"abstract":"The total vertex irregularity strength of a graph <em>G=</em>(<em>V,E</em>) is the minimum integer <em>k</em> so that there is a mapping from <em>V ∪ E</em> to the set {<em>1,2,...,k</em>} so that the vertex-weights (i.e., the sum of labels of a vertex together with the edges incident to it) are all distinct. In this note, we present a new sufficient condition for a tree to have total vertex irregularity strength ⌈(<em>n</em><sub>1</sub><em>+1</em>)<em>/2</em>⌉<em><em>, where <em>n<sub>1</sub></em> is the number of vertices of degree one in the tree.</em></em>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on vertex irregular total labeling of trees\",\"authors\":\"Faisal Susanto, R. Simanjuntak, E. Baskoro\",\"doi\":\"10.19184/ijc.2023.7.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total vertex irregularity strength of a graph <em>G=</em>(<em>V,E</em>) is the minimum integer <em>k</em> so that there is a mapping from <em>V ∪ E</em> to the set {<em>1,2,...,k</em>} so that the vertex-weights (i.e., the sum of labels of a vertex together with the edges incident to it) are all distinct. In this note, we present a new sufficient condition for a tree to have total vertex irregularity strength ⌈(<em>n</em><sub>1</sub><em>+1</em>)<em>/2</em>⌉<em><em>, where <em>n<sub>1</sub></em> is the number of vertices of degree one in the tree.</em></em>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2023.7.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2023.7.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图 G=(V,E)的总顶点不规则强度是最小整数 k,即存在一个从 V∪E 到集合 {1,2,...,k}的映射,使得顶点权重(即一个顶点的标签与它所附带的边的总和)都是不同的。在本说明中,我们提出了一个新的充分条件,即一棵树具有总顶点不规则强度⌈(n1+1)/2⌉,其中 n1 是树中度为 1 的顶点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on vertex irregular total labeling of trees
The total vertex irregularity strength of a graph G=(V,E) is the minimum integer k so that there is a mapping from V ∪ E to the set {1,2,...,k} so that the vertex-weights (i.e., the sum of labels of a vertex together with the edges incident to it) are all distinct. In this note, we present a new sufficient condition for a tree to have total vertex irregularity strength ⌈(n1+1)/2, where n1 is the number of vertices of degree one in the tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信