采用 EfficientNet 架构的卷积神经网络 (CNN) 方法对眼底图像中的眼疾进行分类

Zhafeni Arif, R. Yunendah, Nur Fu’adah, Syamsul Rizal, Divo Ilhamdi, Convolutional Neural Network
{"title":"采用 EfficientNet 架构的卷积神经网络 (CNN) 方法对眼底图像中的眼疾进行分类","authors":"Zhafeni Arif, R. Yunendah, Nur Fu’adah, Syamsul Rizal, Divo Ilhamdi, Convolutional Neural Network","doi":"10.29210/30032835000","DOIUrl":null,"url":null,"abstract":"This research is designed to classify eye disease conditions into three classes, namely normal, cataract, and glaucoma using a system. The system will use Convolutional Neural Network (CNN) with EfficientNet architecture. The EfficientNet that will be used is EfficientNet-B0. The dataset in this paper is obtained from Kaggle totaling 300 images. From this data, augmentation is carried out so that 3.600 images are obtained consisting of \"normal\" (1200 images), \"cataract\" (1200 images), and \"glaucoma\" (1200 images). This data is processed into 4 different datasets, namely the original dataset, augmentation dataset, augmentation dataset that has been preprocessed grayscale, and augmentation dataset that has been preprocessed thresholding. The best results are obtained using the Adam optimizer, learning rate 0.00001, and batch size 32, and iterations of 20 epochs. The best dataset is the augmentation dataset that has been preprocessed grayscale with an accuracy of 79.22%, precision value of 80.3%, recall value of 79.22%, F1-Score of 78.87%.","PeriodicalId":406167,"journal":{"name":"JRTI (Jurnal Riset Tindakan Indonesia)","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of eye diseases in fundus images using Convolutional Neural Network (CNN) method with EfficientNet architecture\",\"authors\":\"Zhafeni Arif, R. Yunendah, Nur Fu’adah, Syamsul Rizal, Divo Ilhamdi, Convolutional Neural Network\",\"doi\":\"10.29210/30032835000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is designed to classify eye disease conditions into three classes, namely normal, cataract, and glaucoma using a system. The system will use Convolutional Neural Network (CNN) with EfficientNet architecture. The EfficientNet that will be used is EfficientNet-B0. The dataset in this paper is obtained from Kaggle totaling 300 images. From this data, augmentation is carried out so that 3.600 images are obtained consisting of \\\"normal\\\" (1200 images), \\\"cataract\\\" (1200 images), and \\\"glaucoma\\\" (1200 images). This data is processed into 4 different datasets, namely the original dataset, augmentation dataset, augmentation dataset that has been preprocessed grayscale, and augmentation dataset that has been preprocessed thresholding. The best results are obtained using the Adam optimizer, learning rate 0.00001, and batch size 32, and iterations of 20 epochs. The best dataset is the augmentation dataset that has been preprocessed grayscale with an accuracy of 79.22%, precision value of 80.3%, recall value of 79.22%, F1-Score of 78.87%.\",\"PeriodicalId\":406167,\"journal\":{\"name\":\"JRTI (Jurnal Riset Tindakan Indonesia)\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JRTI (Jurnal Riset Tindakan Indonesia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29210/30032835000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JRTI (Jurnal Riset Tindakan Indonesia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29210/30032835000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在利用一个系统将眼部疾病分为三类,即正常、白内障和青光眼。该系统将使用 EfficientNet 架构的卷积神经网络(CNN)。将使用的 EfficientNet 是 EfficientNet-B0。本文中的数据集来自 Kaggle,共有 300 幅图像。从这些数据中,我们进行了扩增,得到了 3.600 张图像,包括 "正常"(1200 张)、"白内障"(1200 张)和 "青光眼"(1200 张)。这些数据被处理成 4 个不同的数据集,即原始数据集、增强数据集、经过灰度预处理的增强数据集和经过阈值预处理的增强数据集。使用 Adam 优化器、学习率为 0.00001、批量大小为 32、迭代次数为 20 次,可以获得最佳结果。最佳数据集是经过灰度预处理的增强数据集,准确率为 79.22%,精确率为 80.3%,召回率为 79.22%,F1 分数为 78.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of eye diseases in fundus images using Convolutional Neural Network (CNN) method with EfficientNet architecture
This research is designed to classify eye disease conditions into three classes, namely normal, cataract, and glaucoma using a system. The system will use Convolutional Neural Network (CNN) with EfficientNet architecture. The EfficientNet that will be used is EfficientNet-B0. The dataset in this paper is obtained from Kaggle totaling 300 images. From this data, augmentation is carried out so that 3.600 images are obtained consisting of "normal" (1200 images), "cataract" (1200 images), and "glaucoma" (1200 images). This data is processed into 4 different datasets, namely the original dataset, augmentation dataset, augmentation dataset that has been preprocessed grayscale, and augmentation dataset that has been preprocessed thresholding. The best results are obtained using the Adam optimizer, learning rate 0.00001, and batch size 32, and iterations of 20 epochs. The best dataset is the augmentation dataset that has been preprocessed grayscale with an accuracy of 79.22%, precision value of 80.3%, recall value of 79.22%, F1-Score of 78.87%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信