{"title":"利用正弦波和方波模拟认知电子战系统","authors":"Krishna K Naik","doi":"10.14429/dsj.73.18539","DOIUrl":null,"url":null,"abstract":"Today’s Electronic Warfare (EW) receivers need advanced technology to achieve real-time surveillance operations. Dynamic and intelligent systems are required for UAVs and other airborne applications. The airborne Electronic Warfare systems must be knowledge-based systems, learning from the threat scenario with highly integrated capabilities to detect, react, and adapt to radar threats in real-time. Artificial intelligence is a machine-dependent process, by adapting certain rules and logic supported by human intelligence, AI can be used for cognitive processing. Cognitive signal processing is required for making the system autonomous and dynamic in nature. Military action on radar signatures requires a set of commands to be executed dynamically with the help of the proposed EW system. It is proposed to design and develop a cognitive EW architecture and simulation of machine learning that combines neural network architecture with the help of sine and square waves as input. This paper presents the Cognitive signal processing for EW systems with Neural Network, Recurrent Neural Network (RNN), Machine learning (ML), and Deep learning (DL) techniques with their simulation with sine and square waves.","PeriodicalId":11043,"journal":{"name":"Defence Science Journal","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Cognitive Electronic Warfare System With Sine and Square Waves\",\"authors\":\"Krishna K Naik\",\"doi\":\"10.14429/dsj.73.18539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s Electronic Warfare (EW) receivers need advanced technology to achieve real-time surveillance operations. Dynamic and intelligent systems are required for UAVs and other airborne applications. The airborne Electronic Warfare systems must be knowledge-based systems, learning from the threat scenario with highly integrated capabilities to detect, react, and adapt to radar threats in real-time. Artificial intelligence is a machine-dependent process, by adapting certain rules and logic supported by human intelligence, AI can be used for cognitive processing. Cognitive signal processing is required for making the system autonomous and dynamic in nature. Military action on radar signatures requires a set of commands to be executed dynamically with the help of the proposed EW system. It is proposed to design and develop a cognitive EW architecture and simulation of machine learning that combines neural network architecture with the help of sine and square waves as input. This paper presents the Cognitive signal processing for EW systems with Neural Network, Recurrent Neural Network (RNN), Machine learning (ML), and Deep learning (DL) techniques with their simulation with sine and square waves.\",\"PeriodicalId\":11043,\"journal\":{\"name\":\"Defence Science Journal\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dsj.73.18539\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.18539","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Simulation of Cognitive Electronic Warfare System With Sine and Square Waves
Today’s Electronic Warfare (EW) receivers need advanced technology to achieve real-time surveillance operations. Dynamic and intelligent systems are required for UAVs and other airborne applications. The airborne Electronic Warfare systems must be knowledge-based systems, learning from the threat scenario with highly integrated capabilities to detect, react, and adapt to radar threats in real-time. Artificial intelligence is a machine-dependent process, by adapting certain rules and logic supported by human intelligence, AI can be used for cognitive processing. Cognitive signal processing is required for making the system autonomous and dynamic in nature. Military action on radar signatures requires a set of commands to be executed dynamically with the help of the proposed EW system. It is proposed to design and develop a cognitive EW architecture and simulation of machine learning that combines neural network architecture with the help of sine and square waves as input. This paper presents the Cognitive signal processing for EW systems with Neural Network, Recurrent Neural Network (RNN), Machine learning (ML), and Deep learning (DL) techniques with their simulation with sine and square waves.
期刊介绍:
Defence Science Journal is a peer-reviewed, multidisciplinary research journal in the area of defence science and technology. Journal feature recent progresses made in the field of defence/military support system and new findings/breakthroughs, etc. Major subject fields covered include: aeronautics, armaments, combat vehicles and engineering, biomedical sciences, computer sciences, electronics, material sciences, missiles, naval systems, etc.