双排晶体纤维增强复合材料在动态弹塑性配方中的平面应变状态

Vladislav Bogdanov
{"title":"双排晶体纤维增强复合材料在动态弹塑性配方中的平面应变状态","authors":"Vladislav Bogdanov","doi":"10.47485/2832-9384.1034","DOIUrl":null,"url":null,"abstract":"A generalized approach was developed for solving contact problems in a dynamic elastic-plastic formulation. For the design of composite and reinforced materials, a technique for solving dynamic contact problems in more adequate an elastic-plastic mathematical formulation is used. To consider the physical nonlinearity of the deformation process, the method of successive approximations is used, which makes it possible to reduce the nonlinear problem to a solution of the sequences of linear problems. In contrast to the traditional plane strain, when one normal stress is equal to a certain constant value, for a more accurate description of the deformation of the sample, taking into ac-count the possible increase in longitudinal elongation, we present this normal stress as a function that depends on the parameters that describe the bending of a prismatic body that is in a plain strain state. The problem of a plane strain state of a beam made from the composite reinforced one-layer material is being solved. The reinforced or armed composite material consists of two materials: the main material of glass and two rows of the reinforcing crystalline fourteen fibres of basalt. Glass has high strength and is not affected by the processes of aging of the material, corrosion, and creep. In addition, this material is cheap and widely available. The reinforced composite beam is rigidly linked to an absolutely solid base and on which an absolutely solid impactor acts from above in the centre on a different size of the area of initial contact.","PeriodicalId":372397,"journal":{"name":"Journal of Materials and Polymer Science","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plane Strain State of Composite Material Reinforced by Two Rows of Crystalline Fibres in Dynamic Elastic-Plastic Formulation\",\"authors\":\"Vladislav Bogdanov\",\"doi\":\"10.47485/2832-9384.1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized approach was developed for solving contact problems in a dynamic elastic-plastic formulation. For the design of composite and reinforced materials, a technique for solving dynamic contact problems in more adequate an elastic-plastic mathematical formulation is used. To consider the physical nonlinearity of the deformation process, the method of successive approximations is used, which makes it possible to reduce the nonlinear problem to a solution of the sequences of linear problems. In contrast to the traditional plane strain, when one normal stress is equal to a certain constant value, for a more accurate description of the deformation of the sample, taking into ac-count the possible increase in longitudinal elongation, we present this normal stress as a function that depends on the parameters that describe the bending of a prismatic body that is in a plain strain state. The problem of a plane strain state of a beam made from the composite reinforced one-layer material is being solved. The reinforced or armed composite material consists of two materials: the main material of glass and two rows of the reinforcing crystalline fourteen fibres of basalt. Glass has high strength and is not affected by the processes of aging of the material, corrosion, and creep. In addition, this material is cheap and widely available. The reinforced composite beam is rigidly linked to an absolutely solid base and on which an absolutely solid impactor acts from above in the centre on a different size of the area of initial contact.\",\"PeriodicalId\":372397,\"journal\":{\"name\":\"Journal of Materials and Polymer Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials and Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47485/2832-9384.1034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials and Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47485/2832-9384.1034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为解决动态弹塑性配方中的接触问题开发了一种通用方法。在复合材料和增强材料的设计中,使用了一种以更充分的弹塑性数学公式解决动态接触问题的技术。为了考虑变形过程的物理非线性,采用了连续近似法,从而可以将非线性问题简化为线性问题序列的求解。与传统的平面应变相比,当一个法向应力等于某个恒定值时,为了更准确地描述试样的变形,同时考虑到纵向伸长的可能增加,我们将这个法向应力表示为一个函数,它取决于描述处于平面应变状态的棱柱体弯曲的参数。我们正在解决由单层增强复合材料制成的梁的平面应变状态问题。增强或武装复合材料由两种材料组成:主材料玻璃和两排增强结晶十四纤维玄武岩。玻璃具有高强度,不受材料老化、腐蚀和蠕变过程的影响。此外,这种材料价格低廉,来源广泛。加强型复合梁与绝对坚固的基座刚性连接,一个绝对坚固的冲击器从上往下作用于中心的不同尺寸的初始接触区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plane Strain State of Composite Material Reinforced by Two Rows of Crystalline Fibres in Dynamic Elastic-Plastic Formulation
A generalized approach was developed for solving contact problems in a dynamic elastic-plastic formulation. For the design of composite and reinforced materials, a technique for solving dynamic contact problems in more adequate an elastic-plastic mathematical formulation is used. To consider the physical nonlinearity of the deformation process, the method of successive approximations is used, which makes it possible to reduce the nonlinear problem to a solution of the sequences of linear problems. In contrast to the traditional plane strain, when one normal stress is equal to a certain constant value, for a more accurate description of the deformation of the sample, taking into ac-count the possible increase in longitudinal elongation, we present this normal stress as a function that depends on the parameters that describe the bending of a prismatic body that is in a plain strain state. The problem of a plane strain state of a beam made from the composite reinforced one-layer material is being solved. The reinforced or armed composite material consists of two materials: the main material of glass and two rows of the reinforcing crystalline fourteen fibres of basalt. Glass has high strength and is not affected by the processes of aging of the material, corrosion, and creep. In addition, this material is cheap and widely available. The reinforced composite beam is rigidly linked to an absolutely solid base and on which an absolutely solid impactor acts from above in the centre on a different size of the area of initial contact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信