Mayank Singhal, Rajesh Kumar, R. Walia, S. K. Pandey
{"title":"适用于红外成像的焦耳-汤姆逊冷却器的实验研究与热物理分析","authors":"Mayank Singhal, Rajesh Kumar, R. Walia, S. K. Pandey","doi":"10.14429/dsj.73.18686","DOIUrl":null,"url":null,"abstract":"Recuperative type of heat exchanger (H-E) based miniature Joule-Thomson (J-T) cooler operated in the steady-state condition is employed extensively in applications towards infrared detectors cooling, thermal imaging cameras, and homing guidance devices in a wide variety of defence projectile systems. In this study, a theoretical thermal design of recuperative H-E for determining a viable geometry using iterative methodology is discussed. A steady-state numerical analysis for the developed geometrical model of the H-E is also reported, along with the experimental studies for typical operating conditions. A custom numerical code using the Runge-Kutta method has been developed in MATLAB, and the results from the code compared with predictions of COMSOL multi-physics are in good agreement. Further, results have been validated proving the efficacy of the theoretical model and custom numerical code developed.","PeriodicalId":11043,"journal":{"name":"Defence Science Journal","volume":"76 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation and Thermophysics Analysis of Joule Thomson Cooler Applicable to Infrared Imaging\",\"authors\":\"Mayank Singhal, Rajesh Kumar, R. Walia, S. K. Pandey\",\"doi\":\"10.14429/dsj.73.18686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recuperative type of heat exchanger (H-E) based miniature Joule-Thomson (J-T) cooler operated in the steady-state condition is employed extensively in applications towards infrared detectors cooling, thermal imaging cameras, and homing guidance devices in a wide variety of defence projectile systems. In this study, a theoretical thermal design of recuperative H-E for determining a viable geometry using iterative methodology is discussed. A steady-state numerical analysis for the developed geometrical model of the H-E is also reported, along with the experimental studies for typical operating conditions. A custom numerical code using the Runge-Kutta method has been developed in MATLAB, and the results from the code compared with predictions of COMSOL multi-physics are in good agreement. Further, results have been validated proving the efficacy of the theoretical model and custom numerical code developed.\",\"PeriodicalId\":11043,\"journal\":{\"name\":\"Defence Science Journal\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dsj.73.18686\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.18686","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Experimental Investigation and Thermophysics Analysis of Joule Thomson Cooler Applicable to Infrared Imaging
Recuperative type of heat exchanger (H-E) based miniature Joule-Thomson (J-T) cooler operated in the steady-state condition is employed extensively in applications towards infrared detectors cooling, thermal imaging cameras, and homing guidance devices in a wide variety of defence projectile systems. In this study, a theoretical thermal design of recuperative H-E for determining a viable geometry using iterative methodology is discussed. A steady-state numerical analysis for the developed geometrical model of the H-E is also reported, along with the experimental studies for typical operating conditions. A custom numerical code using the Runge-Kutta method has been developed in MATLAB, and the results from the code compared with predictions of COMSOL multi-physics are in good agreement. Further, results have been validated proving the efficacy of the theoretical model and custom numerical code developed.
期刊介绍:
Defence Science Journal is a peer-reviewed, multidisciplinary research journal in the area of defence science and technology. Journal feature recent progresses made in the field of defence/military support system and new findings/breakthroughs, etc. Major subject fields covered include: aeronautics, armaments, combat vehicles and engineering, biomedical sciences, computer sciences, electronics, material sciences, missiles, naval systems, etc.