K 均值聚类法用于印度尼西亚自然灾害分布模式分析

M Aditya Yoga Pratama, Agus Rahmad Hidayah, Tertia Avini
{"title":"K 均值聚类法用于印度尼西亚自然灾害分布模式分析","authors":"M Aditya Yoga Pratama, Agus Rahmad Hidayah, Tertia Avini","doi":"10.55606/jitek.v3i2.1506","DOIUrl":null,"url":null,"abstract":"Data clustering plays a crucial role in data analysis for identifying hidden patterns, trends, and structures within the data. The K-Means algorithm has gained popularity as a widely used method for data clustering due to its efficiency and ease of implementation. Clustering is a data analysis technique utilized to group similar objects together. The K-Means algorithm stands out as one of the most renowned and frequently employed clustering methods across various fields, including data science, pattern recognition, and artificial intelligence. In this research, we collected data on natural disasters from different regions in Indonesia and employed it as input for the K-Means clustering algorithm. K-Means was utilized to cluster the similarity patterns within the occurring natural disasters. The clustering results provide information about groups that may exhibit similar characteristics and disaster risks.","PeriodicalId":356696,"journal":{"name":"Jurnal Informatika Dan Tekonologi Komputer (JITEK)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLUSTERING K-MEANS UNTUK ANALISIS POLA PERSEBARAN BENCANA ALAM DI INDONESIA\",\"authors\":\"M Aditya Yoga Pratama, Agus Rahmad Hidayah, Tertia Avini\",\"doi\":\"10.55606/jitek.v3i2.1506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering plays a crucial role in data analysis for identifying hidden patterns, trends, and structures within the data. The K-Means algorithm has gained popularity as a widely used method for data clustering due to its efficiency and ease of implementation. Clustering is a data analysis technique utilized to group similar objects together. The K-Means algorithm stands out as one of the most renowned and frequently employed clustering methods across various fields, including data science, pattern recognition, and artificial intelligence. In this research, we collected data on natural disasters from different regions in Indonesia and employed it as input for the K-Means clustering algorithm. K-Means was utilized to cluster the similarity patterns within the occurring natural disasters. The clustering results provide information about groups that may exhibit similar characteristics and disaster risks.\",\"PeriodicalId\":356696,\"journal\":{\"name\":\"Jurnal Informatika Dan Tekonologi Komputer (JITEK)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Dan Tekonologi Komputer (JITEK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55606/jitek.v3i2.1506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Dan Tekonologi Komputer (JITEK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55606/jitek.v3i2.1506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据聚类在数据分析中起着至关重要的作用,它可以识别数据中隐藏的模式、趋势和结构。K-Means 算法因其高效性和易于实施而广受欢迎,成为一种广泛使用的数据聚类方法。聚类是一种数据分析技术,用于将相似的对象归类在一起。K-Means 算法是数据科学、模式识别和人工智能等各个领域最著名、最常用的聚类方法之一。在这项研究中,我们收集了印度尼西亚不同地区的自然灾害数据,并将其作为 K-Means 聚类算法的输入。我们利用 K-Means 对发生的自然灾害中的相似模式进行聚类。聚类结果提供了可能表现出相似特征和灾害风险的群体信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLUSTERING K-MEANS UNTUK ANALISIS POLA PERSEBARAN BENCANA ALAM DI INDONESIA
Data clustering plays a crucial role in data analysis for identifying hidden patterns, trends, and structures within the data. The K-Means algorithm has gained popularity as a widely used method for data clustering due to its efficiency and ease of implementation. Clustering is a data analysis technique utilized to group similar objects together. The K-Means algorithm stands out as one of the most renowned and frequently employed clustering methods across various fields, including data science, pattern recognition, and artificial intelligence. In this research, we collected data on natural disasters from different regions in Indonesia and employed it as input for the K-Means clustering algorithm. K-Means was utilized to cluster the similarity patterns within the occurring natural disasters. The clustering results provide information about groups that may exhibit similar characteristics and disaster risks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信