AspectCSE:利用对比学习和结构化知识实现基于方面的语义文本相似性的句子嵌入

Tim Schopf, Emanuel Gerber, Malte Ostendorff, F. Matthes
{"title":"AspectCSE:利用对比学习和结构化知识实现基于方面的语义文本相似性的句子嵌入","authors":"Tim Schopf, Emanuel Gerber, Malte Ostendorff, F. Matthes","doi":"10.26615/978-954-452-092-2_113","DOIUrl":null,"url":null,"abstract":"Generic sentence embeddings provide coarse-grained approximation of semantic textual similarity, but ignore specific aspects that make texts similar. Conversely, aspect-based sentence embeddings provide similarities between texts based on certain predefined aspects. Thus, similarity predictions of texts are more targeted to specific requirements and more easily explainable. In this paper, we present AspectCSE, an approach for aspect-based contrastive learning of sentence embeddings. Results indicate that AspectCSE achieves an average improvement of 3.97% on information retrieval tasks across multiple aspects compared to the previous best results. We also propose the use of Wikidata knowledge graph properties to train models of multi-aspect sentence embeddings in which multiple specific aspects are simultaneously considered during similarity predictions. We demonstrate that multi-aspect embeddings outperform even single-aspect embeddings on aspect-specific information retrieval tasks. Finally, we examine the aspect-based sentence embedding space and demonstrate that embeddings of semantically similar aspect labels are often close, even without explicit similarity training between different aspect labels.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"75 1","pages":"1054-1065"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AspectCSE: Sentence Embeddings for Aspect-Based Semantic Textual Similarity Using Contrastive Learning and Structured Knowledge\",\"authors\":\"Tim Schopf, Emanuel Gerber, Malte Ostendorff, F. Matthes\",\"doi\":\"10.26615/978-954-452-092-2_113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generic sentence embeddings provide coarse-grained approximation of semantic textual similarity, but ignore specific aspects that make texts similar. Conversely, aspect-based sentence embeddings provide similarities between texts based on certain predefined aspects. Thus, similarity predictions of texts are more targeted to specific requirements and more easily explainable. In this paper, we present AspectCSE, an approach for aspect-based contrastive learning of sentence embeddings. Results indicate that AspectCSE achieves an average improvement of 3.97% on information retrieval tasks across multiple aspects compared to the previous best results. We also propose the use of Wikidata knowledge graph properties to train models of multi-aspect sentence embeddings in which multiple specific aspects are simultaneously considered during similarity predictions. We demonstrate that multi-aspect embeddings outperform even single-aspect embeddings on aspect-specific information retrieval tasks. Finally, we examine the aspect-based sentence embedding space and demonstrate that embeddings of semantically similar aspect labels are often close, even without explicit similarity training between different aspect labels.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"75 1\",\"pages\":\"1054-1065\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-092-2_113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-092-2_113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通用句子嵌入提供了语义文本相似性的粗粒度近似值,但忽略了使文本相似的特定方面。相反,基于方面的句子嵌入则根据某些预定义的方面提供文本之间的相似性。因此,文本的相似性预测更能满足特定要求,也更容易解释。本文介绍了基于方面的句子嵌入对比学习方法 AspectCSE。结果表明,与之前的最佳结果相比,AspectCSE 在多个方面的信息检索任务中平均提高了 3.97%。我们还建议使用维基数据知识图谱属性来训练多方面句子嵌入模型,其中在进行相似性预测时会同时考虑多个特定方面。我们证明,在特定方面的信息检索任务中,多方面嵌入甚至优于单方面嵌入。最后,我们研究了基于方面的句子嵌入空间,并证明即使不同方面标签之间没有明确的相似性训练,语义上相似的方面标签的嵌入通常也很接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AspectCSE: Sentence Embeddings for Aspect-Based Semantic Textual Similarity Using Contrastive Learning and Structured Knowledge
Generic sentence embeddings provide coarse-grained approximation of semantic textual similarity, but ignore specific aspects that make texts similar. Conversely, aspect-based sentence embeddings provide similarities between texts based on certain predefined aspects. Thus, similarity predictions of texts are more targeted to specific requirements and more easily explainable. In this paper, we present AspectCSE, an approach for aspect-based contrastive learning of sentence embeddings. Results indicate that AspectCSE achieves an average improvement of 3.97% on information retrieval tasks across multiple aspects compared to the previous best results. We also propose the use of Wikidata knowledge graph properties to train models of multi-aspect sentence embeddings in which multiple specific aspects are simultaneously considered during similarity predictions. We demonstrate that multi-aspect embeddings outperform even single-aspect embeddings on aspect-specific information retrieval tasks. Finally, we examine the aspect-based sentence embedding space and demonstrate that embeddings of semantically similar aspect labels are often close, even without explicit similarity training between different aspect labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信