利用幅度约束量子控制确定最小量子门持续时间的实用方法

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
Stefanie Günther, N. Petersson
{"title":"利用幅度约束量子控制确定最小量子门持续时间的实用方法","authors":"Stefanie Günther, N. Petersson","doi":"10.1116/5.0173373","DOIUrl":null,"url":null,"abstract":"We present an iterative scheme to estimate the minimal duration in which a quantum gate can be realized while satisfying hardware constraints on the control pulse amplitudes. The scheme performs a sequence of unconstrained numerical optimal control cycles that each minimize the gate fidelity for a given gate duration alongside an additional penalty term for the control pulse amplitudes. After each cycle, the gate duration is adjusted based on the inverse of the resulting maximum control pulse amplitudes by re-scaling the dynamics to a new duration where control pulses satisfy the amplitude constraints. Those scaled controls then serve as an initial guess for the next unconstrained optimal control cycle, using the adjusted gate duration. We provide multiple numerical examples that each demonstrate fast convergence of the scheme toward a gate duration that is close to the quantum speed limit, given the control pulse amplitude bound. The proposed technique is agnostic to the underlying system and control Hamiltonian models, as well as the target unitary gate operation, making the time-scaling iteration an easy to implement and practically useful scheme for reducing the durations of quantum gate operations.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":"19 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical approach to determine minimal quantum gate durations using amplitude-bounded quantum controls\",\"authors\":\"Stefanie Günther, N. Petersson\",\"doi\":\"10.1116/5.0173373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an iterative scheme to estimate the minimal duration in which a quantum gate can be realized while satisfying hardware constraints on the control pulse amplitudes. The scheme performs a sequence of unconstrained numerical optimal control cycles that each minimize the gate fidelity for a given gate duration alongside an additional penalty term for the control pulse amplitudes. After each cycle, the gate duration is adjusted based on the inverse of the resulting maximum control pulse amplitudes by re-scaling the dynamics to a new duration where control pulses satisfy the amplitude constraints. Those scaled controls then serve as an initial guess for the next unconstrained optimal control cycle, using the adjusted gate duration. We provide multiple numerical examples that each demonstrate fast convergence of the scheme toward a gate duration that is close to the quantum speed limit, given the control pulse amplitude bound. The proposed technique is agnostic to the underlying system and control Hamiltonian models, as well as the target unitary gate operation, making the time-scaling iteration an easy to implement and practically useful scheme for reducing the durations of quantum gate operations.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0173373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0173373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种迭代方案,用于估算实现量子门的最小持续时间,同时满足控制脉冲幅度的硬件约束。该方案执行一连串无约束数值优化控制循环,每个循环在给定栅极持续时间内最小化栅极保真度,同时为控制脉冲幅度附加惩罚项。每个周期结束后,根据所产生的最大控制脉冲振幅的倒数来调整栅极持续时间,方法是重新缩放动力学到一个新的持续时间,使控制脉冲满足振幅约束。然后,利用调整后的门持续时间,将这些缩放控制作为下一个无约束优化控制周期的初始猜测。我们提供了多个数值示例,每个示例都证明了在控制脉冲振幅约束下,该方案能快速收敛到接近量子速度极限的栅极持续时间。所提出的技术与底层系统和控制哈密顿模型以及目标单元门操作无关,因此时间缩放迭代是一种易于实现且实用的方案,可缩短量子门操作的持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical approach to determine minimal quantum gate durations using amplitude-bounded quantum controls
We present an iterative scheme to estimate the minimal duration in which a quantum gate can be realized while satisfying hardware constraints on the control pulse amplitudes. The scheme performs a sequence of unconstrained numerical optimal control cycles that each minimize the gate fidelity for a given gate duration alongside an additional penalty term for the control pulse amplitudes. After each cycle, the gate duration is adjusted based on the inverse of the resulting maximum control pulse amplitudes by re-scaling the dynamics to a new duration where control pulses satisfy the amplitude constraints. Those scaled controls then serve as an initial guess for the next unconstrained optimal control cycle, using the adjusted gate duration. We provide multiple numerical examples that each demonstrate fast convergence of the scheme toward a gate duration that is close to the quantum speed limit, given the control pulse amplitude bound. The proposed technique is agnostic to the underlying system and control Hamiltonian models, as well as the target unitary gate operation, making the time-scaling iteration an easy to implement and practically useful scheme for reducing the durations of quantum gate operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信