使用 CNN 和 LSTM 对 TripAdvisor 提供的旅游景点评论进行情感分析

Kevin Adrian Manurung
{"title":"使用 CNN 和 LSTM 对 TripAdvisor 提供的旅游景点评论进行情感分析","authors":"Kevin Adrian Manurung","doi":"10.21108/ijoict.v9i1.756","DOIUrl":null,"url":null,"abstract":"The tourism sector has an important role in driving the economy. To find out the positive or negative responses of tourists, one of them is grouping through sentiment analysis using deep learning. The data used the tourist attraction dataset from TripAdvisor from several categories such as water and amusement park, nature, and museum. The methods used in this research are convolutional neural network (CNN) and long short-term memory (LSTM). In addition, Word2vec for feature extraction and Synthetic Minority Over-sampling (SMOTE) for handling imbalanced datasets will be used for this research. There are several scenarios used to perform sentiment analysis, with early stopping and with hyperparameter tuning using random search. The highest performance obtained on water and amusement park, nature, and museum category data is 83%, 97%, and 88% respectively for accuracy and 91%, 92%, and 93% respectively for F1-score. For the use of sentiment analysis methods, CNN can perform with the highest F1-score and LSTM can perform with the highest accuracy.","PeriodicalId":137090,"journal":{"name":"International Journal on Information and Communication Technology (IJoICT)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis of Tourist Attraction Review from TripAdvisor Using CNN and LSTM\",\"authors\":\"Kevin Adrian Manurung\",\"doi\":\"10.21108/ijoict.v9i1.756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tourism sector has an important role in driving the economy. To find out the positive or negative responses of tourists, one of them is grouping through sentiment analysis using deep learning. The data used the tourist attraction dataset from TripAdvisor from several categories such as water and amusement park, nature, and museum. The methods used in this research are convolutional neural network (CNN) and long short-term memory (LSTM). In addition, Word2vec for feature extraction and Synthetic Minority Over-sampling (SMOTE) for handling imbalanced datasets will be used for this research. There are several scenarios used to perform sentiment analysis, with early stopping and with hyperparameter tuning using random search. The highest performance obtained on water and amusement park, nature, and museum category data is 83%, 97%, and 88% respectively for accuracy and 91%, 92%, and 93% respectively for F1-score. For the use of sentiment analysis methods, CNN can perform with the highest F1-score and LSTM can perform with the highest accuracy.\",\"PeriodicalId\":137090,\"journal\":{\"name\":\"International Journal on Information and Communication Technology (IJoICT)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Information and Communication Technology (IJoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21108/ijoict.v9i1.756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information and Communication Technology (IJoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/ijoict.v9i1.756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旅游业在推动经济发展方面发挥着重要作用。为了找出游客的积极或消极反应,其中一种方法是利用深度学习通过情感分析进行分组。数据使用的是 TripAdvisor 的旅游景点数据集,包括水上和游乐园、自然和博物馆等多个类别。本研究使用的方法是卷积神经网络(CNN)和长短期记忆(LSTM)。此外,Word2vec 用于特征提取,SMOTE 用于处理不平衡数据集。情感分析有多种应用场景,包括早期停止和使用随机搜索调整超参数。在水和游乐园、自然和博物馆类别数据上获得的最高性能分别为:准确率 83%、97% 和 88%,F1 分数分别为 91%、92% 和 93%。在使用情感分析方法时,CNN 的 F1 分数最高,LSTM 的准确率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of Tourist Attraction Review from TripAdvisor Using CNN and LSTM
The tourism sector has an important role in driving the economy. To find out the positive or negative responses of tourists, one of them is grouping through sentiment analysis using deep learning. The data used the tourist attraction dataset from TripAdvisor from several categories such as water and amusement park, nature, and museum. The methods used in this research are convolutional neural network (CNN) and long short-term memory (LSTM). In addition, Word2vec for feature extraction and Synthetic Minority Over-sampling (SMOTE) for handling imbalanced datasets will be used for this research. There are several scenarios used to perform sentiment analysis, with early stopping and with hyperparameter tuning using random search. The highest performance obtained on water and amusement park, nature, and museum category data is 83%, 97%, and 88% respectively for accuracy and 91%, 92%, and 93% respectively for F1-score. For the use of sentiment analysis methods, CNN can perform with the highest F1-score and LSTM can perform with the highest accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信