Walter Fuertes, Karen Hunter, D. Benítez, Noel Pérez, Felipe Grijalva, Maria Baldeon-Calisto
{"title":"卷积神经网络在机器人手臂操纵的情感识别中的应用","authors":"Walter Fuertes, Karen Hunter, D. Benítez, Noel Pérez, Felipe Grijalva, Maria Baldeon-Calisto","doi":"10.1109/ColCACI59285.2023.10225880","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a system that operates a robotic arm to deliver an object based on the facial expression of a human standing in front of the robot, demonstrating real-time emotion recognition for physical Human-Robot Interaction. To achieve this, a convolutional neural network-based model was developed to identify emotions in real time. The robotic arm operation was implemented using an embedded NVidia Jetson Nano computer, a web camera, and OpenCV, ROS, and TensorFlow libraries. Using a 26.6k face photos data set from the emotion detection database, the built emotion detection model demonstrated an accuracy of 93.5% and an error of 6.5% during training and validation. The final real-time prototype had a testing accuracy of 94% with an error of 6%. This proof-of-concept shows that in the near future more advanced applications that harness user emotions may also be built.","PeriodicalId":206196,"journal":{"name":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","volume":"66 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Convolutional Neural Networks to Emotion Recognition for Robotic Arm Manipulation\",\"authors\":\"Walter Fuertes, Karen Hunter, D. Benítez, Noel Pérez, Felipe Grijalva, Maria Baldeon-Calisto\",\"doi\":\"10.1109/ColCACI59285.2023.10225880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of a system that operates a robotic arm to deliver an object based on the facial expression of a human standing in front of the robot, demonstrating real-time emotion recognition for physical Human-Robot Interaction. To achieve this, a convolutional neural network-based model was developed to identify emotions in real time. The robotic arm operation was implemented using an embedded NVidia Jetson Nano computer, a web camera, and OpenCV, ROS, and TensorFlow libraries. Using a 26.6k face photos data set from the emotion detection database, the built emotion detection model demonstrated an accuracy of 93.5% and an error of 6.5% during training and validation. The final real-time prototype had a testing accuracy of 94% with an error of 6%. This proof-of-concept shows that in the near future more advanced applications that harness user emotions may also be built.\",\"PeriodicalId\":206196,\"journal\":{\"name\":\"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)\",\"volume\":\"66 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ColCACI59285.2023.10225880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ColCACI59285.2023.10225880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Convolutional Neural Networks to Emotion Recognition for Robotic Arm Manipulation
This paper presents the development of a system that operates a robotic arm to deliver an object based on the facial expression of a human standing in front of the robot, demonstrating real-time emotion recognition for physical Human-Robot Interaction. To achieve this, a convolutional neural network-based model was developed to identify emotions in real time. The robotic arm operation was implemented using an embedded NVidia Jetson Nano computer, a web camera, and OpenCV, ROS, and TensorFlow libraries. Using a 26.6k face photos data set from the emotion detection database, the built emotion detection model demonstrated an accuracy of 93.5% and an error of 6.5% during training and validation. The final real-time prototype had a testing accuracy of 94% with an error of 6%. This proof-of-concept shows that in the near future more advanced applications that harness user emotions may also be built.