修正的莱斯利-高尔模型与霍林 I 型功能反应和猎物的食人行为

Rike Farikha Khofifah, Dian Savitri
{"title":"修正的莱斯利-高尔模型与霍林 I 型功能反应和猎物的食人行为","authors":"Rike Farikha Khofifah, Dian Savitri","doi":"10.24014/sitekin.v21i1.24529","DOIUrl":null,"url":null,"abstract":"The predator-prey model is the mathematical model that describes the interaction behavior between prey and predator. This research discusses the modified Leslie-Gower model by considering the cannibalism behaviors of the prey that contains Holling type I response function, which is a predator with passive characteristics. The stability analysis stage includes determining the system's solution in the form of an equilibrium point, analyzing the local stability of each equilibrium using eigenvalues, and numerical simulation to synchronize the analysis results. Numerical simulations visualized in phase portraits with Python software. The results of the local stability analysis of the system obtained four equilibrium points, namely, equilibrium points  are unstable while is asymptotically stable with certain conditions. The results of numerical simulations show that only the equilibrium point  which is asymptotically stable when the environment carries capacity parameters (e=2.1). Meanwhile, when e=2.878 then, only is asymptotically stable. In this research also using two different initial values, it is concluded that whatever the initial value used, the system solution always converges to the equilibrium points  dan . Changes in environmental carrying capacity affect the dynamics of system solutions.","PeriodicalId":339766,"journal":{"name":"Jurnal Sains dan Teknologi Industri","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Leslie-Gower Model with Holling Type I Functional Responses and Cannibalism in Prey\",\"authors\":\"Rike Farikha Khofifah, Dian Savitri\",\"doi\":\"10.24014/sitekin.v21i1.24529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The predator-prey model is the mathematical model that describes the interaction behavior between prey and predator. This research discusses the modified Leslie-Gower model by considering the cannibalism behaviors of the prey that contains Holling type I response function, which is a predator with passive characteristics. The stability analysis stage includes determining the system's solution in the form of an equilibrium point, analyzing the local stability of each equilibrium using eigenvalues, and numerical simulation to synchronize the analysis results. Numerical simulations visualized in phase portraits with Python software. The results of the local stability analysis of the system obtained four equilibrium points, namely, equilibrium points  are unstable while is asymptotically stable with certain conditions. The results of numerical simulations show that only the equilibrium point  which is asymptotically stable when the environment carries capacity parameters (e=2.1). Meanwhile, when e=2.878 then, only is asymptotically stable. In this research also using two different initial values, it is concluded that whatever the initial value used, the system solution always converges to the equilibrium points  dan . Changes in environmental carrying capacity affect the dynamics of system solutions.\",\"PeriodicalId\":339766,\"journal\":{\"name\":\"Jurnal Sains dan Teknologi Industri\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sains dan Teknologi Industri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24014/sitekin.v21i1.24529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains dan Teknologi Industri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/sitekin.v21i1.24529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

捕食者-猎物模型是描述猎物和捕食者之间相互作用行为的数学模型。本研究通过考虑含有霍林 I 型响应函数的猎物(即具有被动特征的捕食者)的食人行为,讨论了修正的莱斯利-高尔模型。稳定性分析阶段包括以平衡点的形式确定系统的解,利用特征值分析每个平衡点的局部稳定性,以及同步分析结果的数值模拟。数值模拟通过 Python 软件实现相位肖像可视化。系统局部稳定性分析结果得到了四个平衡点,即平衡点不稳定,而在一定条件下渐近稳定。数值模拟结果表明,只有当环境携带容量参数(e=2.1)时,平衡点是渐近稳定的。同时,当 e=2.878 时,只有平衡点是渐近稳定的。本研究还使用了两种不同的初始值,得出的结论是,无论使用哪种初始值,系统解总收敛于平衡点 dan。环境承载能力的变化会影响系统解的动态变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Leslie-Gower Model with Holling Type I Functional Responses and Cannibalism in Prey
The predator-prey model is the mathematical model that describes the interaction behavior between prey and predator. This research discusses the modified Leslie-Gower model by considering the cannibalism behaviors of the prey that contains Holling type I response function, which is a predator with passive characteristics. The stability analysis stage includes determining the system's solution in the form of an equilibrium point, analyzing the local stability of each equilibrium using eigenvalues, and numerical simulation to synchronize the analysis results. Numerical simulations visualized in phase portraits with Python software. The results of the local stability analysis of the system obtained four equilibrium points, namely, equilibrium points  are unstable while is asymptotically stable with certain conditions. The results of numerical simulations show that only the equilibrium point  which is asymptotically stable when the environment carries capacity parameters (e=2.1). Meanwhile, when e=2.878 then, only is asymptotically stable. In this research also using two different initial values, it is concluded that whatever the initial value used, the system solution always converges to the equilibrium points  dan . Changes in environmental carrying capacity affect the dynamics of system solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信