{"title":"不一定是伽罗瓦稳定集合的等差数列:关于米尼奥特的一个定理","authors":"F. Amoroso, Arnaud Plessis","doi":"10.2422/2036-2145.202309_021","DOIUrl":null,"url":null,"abstract":"An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\\alpha_n)_n$ in $\\overline{\\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\\overline{\\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equidistribution for sets which are not necessarily Galois stable: On a theorem of Mignotte\",\"authors\":\"F. Amoroso, Arnaud Plessis\",\"doi\":\"10.2422/2036-2145.202309_021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\\\\alpha_n)_n$ in $\\\\overline{\\\\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\\\\overline{\\\\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202309_021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202309_021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Equidistribution for sets which are not necessarily Galois stable: On a theorem of Mignotte
An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\alpha_n)_n$ in $\overline{\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\overline{\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.