不一定是伽罗瓦稳定集合的等差数列:关于米尼奥特的一个定理

F. Amoroso, Arnaud Plessis
{"title":"不一定是伽罗瓦稳定集合的等差数列:关于米尼奥特的一个定理","authors":"F. Amoroso, Arnaud Plessis","doi":"10.2422/2036-2145.202309_021","DOIUrl":null,"url":null,"abstract":"An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\\alpha_n)_n$ in $\\overline{\\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\\overline{\\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equidistribution for sets which are not necessarily Galois stable: On a theorem of Mignotte\",\"authors\":\"F. Amoroso, Arnaud Plessis\",\"doi\":\"10.2422/2036-2145.202309_021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\\\\alpha_n)_n$ in $\\\\overline{\\\\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\\\\overline{\\\\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202309_021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202309_021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

比卢的一个重要结果涉及$overline{/mathbb{Q}}^*$中$(\alpha_n)_n$序列的伽罗瓦轨道的等分布。在此,我们证明了$\overline{mathbb{Q}}^*$中的有限子集序列的定量等分布定理,这些子集在伽罗瓦作用下不一定稳定。我们遵循米尼奥特的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equidistribution for sets which are not necessarily Galois stable: On a theorem of Mignotte
An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\alpha_n)_n$ in $\overline{\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\overline{\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信