{"title":"基于神经网络的动态聚类模型用于绿色车载 Ad-hoc 网络中的节能数据上传和下载","authors":"Amit Choksi, Mehul Shah","doi":"10.47164/ijngc.v14i3.1150","DOIUrl":null,"url":null,"abstract":"Green VANET is an emerging field of research that spurs interest in energy consumption management for the development of smart cities. It also presents a unique variety of research problems for developing trustworthy and scalable routing protocols as vehicles are susceptible to the restrictions of road geometry and the barriers which limit networking capabilities in urban environments. Clustering is a process of assembling vehicle nodes to create a powerful and effective network infrastructure. According to recent studies, clustering-based routing algorithms in green VANET may significantly improve networking effectiveness and lower infrastructure costs. However, sometimes the vehicle nodes are unaware of their OBU energy consumption, which causes network execution issues and topological alterations. In such instances, the energy consumption of onboard sensors becomes a major problem in the clustering-based routing protocol. Hence, this paper proposes a self-organizing map neural network (SOMNN) based dynamic clustering model to identify energy-efficient nodes from each cluster for vehicular data uploading and downloading applications. The simulation results demonstrate that the proposed model solves network lifetime issues and provides superior network effectiveness with enhanced communication stability. The suggested dynamic clustering model reduces network energy consumption by 26% and 18% in comparison to k – means (KM) and fuzzy c – means (FCM) based clustering model.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"66 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network-based Dynamic Clustering Model for Energy Efficient Data Uploading and Downloading in Green Vehicular Ad-hoc Networks\",\"authors\":\"Amit Choksi, Mehul Shah\",\"doi\":\"10.47164/ijngc.v14i3.1150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green VANET is an emerging field of research that spurs interest in energy consumption management for the development of smart cities. It also presents a unique variety of research problems for developing trustworthy and scalable routing protocols as vehicles are susceptible to the restrictions of road geometry and the barriers which limit networking capabilities in urban environments. Clustering is a process of assembling vehicle nodes to create a powerful and effective network infrastructure. According to recent studies, clustering-based routing algorithms in green VANET may significantly improve networking effectiveness and lower infrastructure costs. However, sometimes the vehicle nodes are unaware of their OBU energy consumption, which causes network execution issues and topological alterations. In such instances, the energy consumption of onboard sensors becomes a major problem in the clustering-based routing protocol. Hence, this paper proposes a self-organizing map neural network (SOMNN) based dynamic clustering model to identify energy-efficient nodes from each cluster for vehicular data uploading and downloading applications. The simulation results demonstrate that the proposed model solves network lifetime issues and provides superior network effectiveness with enhanced communication stability. The suggested dynamic clustering model reduces network energy consumption by 26% and 18% in comparison to k – means (KM) and fuzzy c – means (FCM) based clustering model.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i3.1150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i3.1150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Network-based Dynamic Clustering Model for Energy Efficient Data Uploading and Downloading in Green Vehicular Ad-hoc Networks
Green VANET is an emerging field of research that spurs interest in energy consumption management for the development of smart cities. It also presents a unique variety of research problems for developing trustworthy and scalable routing protocols as vehicles are susceptible to the restrictions of road geometry and the barriers which limit networking capabilities in urban environments. Clustering is a process of assembling vehicle nodes to create a powerful and effective network infrastructure. According to recent studies, clustering-based routing algorithms in green VANET may significantly improve networking effectiveness and lower infrastructure costs. However, sometimes the vehicle nodes are unaware of their OBU energy consumption, which causes network execution issues and topological alterations. In such instances, the energy consumption of onboard sensors becomes a major problem in the clustering-based routing protocol. Hence, this paper proposes a self-organizing map neural network (SOMNN) based dynamic clustering model to identify energy-efficient nodes from each cluster for vehicular data uploading and downloading applications. The simulation results demonstrate that the proposed model solves network lifetime issues and provides superior network effectiveness with enhanced communication stability. The suggested dynamic clustering model reduces network energy consumption by 26% and 18% in comparison to k – means (KM) and fuzzy c – means (FCM) based clustering model.