基于深度学习架构 U-Net 的遥感图像路网检测

IF 0.3
Miral J. Patel, Hasmukh P Koringa
{"title":"基于深度学习架构 U-Net 的遥感图像路网检测","authors":"Miral J. Patel, Hasmukh P Koringa","doi":"10.47164/ijngc.v14i3.1301","DOIUrl":null,"url":null,"abstract":"Roads are the foundation of human civilisation and one of the most important routes of transportation. For the city planning, vehicle traffic control, road network monitoring, map updating and GPS navigation, the study of road extraction is extremely important. Due to similar spectral characteristics, occlusion of buildings and trees present in remote sensing images makes to extract the road surface is challenging task. This paper address the road network detection based on deep learning sementic segmentation architecture such as U-Net and SegNet from Remote Sensing Images (RSI). Publically available dataset is used to train the U-Net and SegNet. These methods are tuned with various hyper parameters such as learning rate, batch size and epochs. The performance of the methods is also observed under various optimization algorithm like SGD and ADAM. The suggested method performance is measured by training and testing accuracy, total training time, inference time, average iou score and average dice score.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"18 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Architecture U-Net Based Road Network Detection from Remote Sensing Images\",\"authors\":\"Miral J. Patel, Hasmukh P Koringa\",\"doi\":\"10.47164/ijngc.v14i3.1301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roads are the foundation of human civilisation and one of the most important routes of transportation. For the city planning, vehicle traffic control, road network monitoring, map updating and GPS navigation, the study of road extraction is extremely important. Due to similar spectral characteristics, occlusion of buildings and trees present in remote sensing images makes to extract the road surface is challenging task. This paper address the road network detection based on deep learning sementic segmentation architecture such as U-Net and SegNet from Remote Sensing Images (RSI). Publically available dataset is used to train the U-Net and SegNet. These methods are tuned with various hyper parameters such as learning rate, batch size and epochs. The performance of the methods is also observed under various optimization algorithm like SGD and ADAM. The suggested method performance is measured by training and testing accuracy, total training time, inference time, average iou score and average dice score.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i3.1301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i3.1301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

道路是人类文明的基础,也是最重要的交通路线之一。对于城市规划、车辆交通控制、路网监控、地图更新和 GPS 导航来说,道路提取的研究极为重要。由于遥感图像中存在相似的光谱特征、建筑物和树木的遮挡,因此提取路面是一项具有挑战性的任务。本文基于 U-Net 和 SegNet 等深度学习分割架构,从遥感图像(RSI)中检测道路网络。这些方法通过各种超参数(如学习率、批量大小和历时)进行调整。还观察了这些方法在各种优化算法(如 SGD 和 ADAM)下的性能。建议方法的性能通过训练和测试准确率、总训练时间、推理时间、平均 iou 分数和平均 dice 分数来衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Architecture U-Net Based Road Network Detection from Remote Sensing Images
Roads are the foundation of human civilisation and one of the most important routes of transportation. For the city planning, vehicle traffic control, road network monitoring, map updating and GPS navigation, the study of road extraction is extremely important. Due to similar spectral characteristics, occlusion of buildings and trees present in remote sensing images makes to extract the road surface is challenging task. This paper address the road network detection based on deep learning sementic segmentation architecture such as U-Net and SegNet from Remote Sensing Images (RSI). Publically available dataset is used to train the U-Net and SegNet. These methods are tuned with various hyper parameters such as learning rate, batch size and epochs. The performance of the methods is also observed under various optimization algorithm like SGD and ADAM. The suggested method performance is measured by training and testing accuracy, total training time, inference time, average iou score and average dice score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信