使用支持向量机算法进行电子健康记录(EHR)分类的数据共享技术

Moh. Erkamim, Said Thaufik Rizaldi, Sepriano Sepriano, Khoirun Nisa, Sulhatun Sulhatun, Zilrahmi Zilrahmi, Winalia Agwil
{"title":"使用支持向量机算法进行电子健康记录(EHR)分类的数据共享技术","authors":"Moh. Erkamim, Said Thaufik Rizaldi, Sepriano Sepriano, Khoirun Nisa, Sulhatun Sulhatun, Zilrahmi Zilrahmi, Winalia Agwil","doi":"10.24014/ijaidm.v6i1.24794","DOIUrl":null,"url":null,"abstract":"The Electronic Health Record (EHR) integrates information about medical history in patients, complications, and history of drug use efficiently, which demands optimality and speed of service for efficiency and effectiveness of services, especially in determining outpatient and inpatient services on accurate patient history data. In efforts to improve data accuracy, this study combined the c, γ, and degree kernels in the Linear, Polynomial, and Radial Basis Function (RBF) kernels as well as data sharing techniques 10-fold cross-validation, k-medoids, and Hold- out (70 % 30%) resulted in superior K-Medoids data sharing techniques for each Polynomial kernel with an accuracy of 75.76% and a Radial Basis Function (RBF) kernel with an accuracy of 75.56% so that it can be said that the combination of K-Medoids and Polynominal kernel in the algorithm Support Vector Machine (SVM) can be used in this research case","PeriodicalId":385582,"journal":{"name":"Indonesian Journal of Artificial Intelligence and Data Mining","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Sharing Technique for Electronic Health Record (EHR) Classification using Support Vector Machine Algorithm\",\"authors\":\"Moh. Erkamim, Said Thaufik Rizaldi, Sepriano Sepriano, Khoirun Nisa, Sulhatun Sulhatun, Zilrahmi Zilrahmi, Winalia Agwil\",\"doi\":\"10.24014/ijaidm.v6i1.24794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Electronic Health Record (EHR) integrates information about medical history in patients, complications, and history of drug use efficiently, which demands optimality and speed of service for efficiency and effectiveness of services, especially in determining outpatient and inpatient services on accurate patient history data. In efforts to improve data accuracy, this study combined the c, γ, and degree kernels in the Linear, Polynomial, and Radial Basis Function (RBF) kernels as well as data sharing techniques 10-fold cross-validation, k-medoids, and Hold- out (70 % 30%) resulted in superior K-Medoids data sharing techniques for each Polynomial kernel with an accuracy of 75.76% and a Radial Basis Function (RBF) kernel with an accuracy of 75.56% so that it can be said that the combination of K-Medoids and Polynominal kernel in the algorithm Support Vector Machine (SVM) can be used in this research case\",\"PeriodicalId\":385582,\"journal\":{\"name\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24014/ijaidm.v6i1.24794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/ijaidm.v6i1.24794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子病历(EHR)有效整合了患者病史、并发症和用药史等信息,这就要求优化服务并加快服务速度,以提高服务效率和效果,特别是在根据准确的患者病史数据确定门诊和住院服务时。为了提高数据准确性,本研究结合了线性、多项式和径向基函数(RBF)内核中的 c、γ 和度数内核,以及数据共享技术 10 倍交叉验证、K-Medoids 和 Hold- out(70 % 30%),结果每个多项式内核的 K-Medoids 数据共享技术都非常出色,准确率达到 75.76%,径向基函数(RBF)内核的准确率为 75.56%,因此可以说,K-Medoids 和多项式内核在支持向量机(SVM)算法中的结合可用于本研究案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Sharing Technique for Electronic Health Record (EHR) Classification using Support Vector Machine Algorithm
The Electronic Health Record (EHR) integrates information about medical history in patients, complications, and history of drug use efficiently, which demands optimality and speed of service for efficiency and effectiveness of services, especially in determining outpatient and inpatient services on accurate patient history data. In efforts to improve data accuracy, this study combined the c, γ, and degree kernels in the Linear, Polynomial, and Radial Basis Function (RBF) kernels as well as data sharing techniques 10-fold cross-validation, k-medoids, and Hold- out (70 % 30%) resulted in superior K-Medoids data sharing techniques for each Polynomial kernel with an accuracy of 75.76% and a Radial Basis Function (RBF) kernel with an accuracy of 75.56% so that it can be said that the combination of K-Medoids and Polynominal kernel in the algorithm Support Vector Machine (SVM) can be used in this research case
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信