可视化问题解答的可用数据集和技术调查

IF 0.3
Lata A. Bhavnani, Dr. Narendra Patel
{"title":"可视化问题解答的可用数据集和技术调查","authors":"Lata A. Bhavnani, Dr. Narendra Patel","doi":"10.47164/ijngc.v14i3.767","DOIUrl":null,"url":null,"abstract":"Visual Question Answering (VQA) is an emerging AI research problem that combines computer vision, natural language processing, knowledge representation & reasoning (KR). Given image and question related to the image as input, it requires analysis of visual components of the image, type of question, and common sense or general knowledge to predict the right answer. VQA is useful in different real-time applications like blind person assistance, autonomous driving, solving trivial tasks like spotting empty tables in hotels, parks, or picnic places, etc. Since its introduction in 2014, many researchers have worked and applied different techniques for Visual question answering. Also, different datasets have been introduced. This paper presents an overview of available datasets and evaluation metrices used in the VQA area. Further paper presents different techniques used in the VQA domain. Techniques are categorized based on the mechanism used. Based on the detailed discussion and performance comparison we discuss various challenges in the VQA domain and provide directions for future work.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"418 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Available Datasets and Techniques for Visual Question Answering\",\"authors\":\"Lata A. Bhavnani, Dr. Narendra Patel\",\"doi\":\"10.47164/ijngc.v14i3.767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Question Answering (VQA) is an emerging AI research problem that combines computer vision, natural language processing, knowledge representation & reasoning (KR). Given image and question related to the image as input, it requires analysis of visual components of the image, type of question, and common sense or general knowledge to predict the right answer. VQA is useful in different real-time applications like blind person assistance, autonomous driving, solving trivial tasks like spotting empty tables in hotels, parks, or picnic places, etc. Since its introduction in 2014, many researchers have worked and applied different techniques for Visual question answering. Also, different datasets have been introduced. This paper presents an overview of available datasets and evaluation metrices used in the VQA area. Further paper presents different techniques used in the VQA domain. Techniques are categorized based on the mechanism used. Based on the detailed discussion and performance comparison we discuss various challenges in the VQA domain and provide directions for future work.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"418 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i3.767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i3.767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉问题解答(VQA)是一个新兴的人工智能研究问题,它结合了计算机视觉、自然语言处理、知识表示与推理(KR)。给定图像和与图像相关的问题作为输入,需要对图像的视觉成分、问题类型以及常识或一般知识进行分析,以预测正确答案。VQA 在不同的实时应用中都很有用,如盲人辅助、自动驾驶、解决琐碎的任务,如在酒店、公园或野餐场所发现空桌子等。自 2014 年推出以来,许多研究人员都在研究和应用不同的视觉问题解答技术。此外,还引入了不同的数据集。本文概述了可视化问题解答领域使用的可用数据集和评估指标。本文还介绍了 VQA 领域使用的不同技术。根据所使用的机制对技术进行了分类。在详细讨论和性能比较的基础上,我们讨论了 VQA 领域面临的各种挑战,并为未来的工作指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Available Datasets and Techniques for Visual Question Answering
Visual Question Answering (VQA) is an emerging AI research problem that combines computer vision, natural language processing, knowledge representation & reasoning (KR). Given image and question related to the image as input, it requires analysis of visual components of the image, type of question, and common sense or general knowledge to predict the right answer. VQA is useful in different real-time applications like blind person assistance, autonomous driving, solving trivial tasks like spotting empty tables in hotels, parks, or picnic places, etc. Since its introduction in 2014, many researchers have worked and applied different techniques for Visual question answering. Also, different datasets have been introduced. This paper presents an overview of available datasets and evaluation metrices used in the VQA area. Further paper presents different techniques used in the VQA domain. Techniques are categorized based on the mechanism used. Based on the detailed discussion and performance comparison we discuss various challenges in the VQA domain and provide directions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信