论马勒不等式和完全复数域的小积分生成器

IF 0.5 3区 数学 Q3 MATHEMATICS
Murray Child, Martin Widmer
{"title":"论马勒不等式和完全复数域的小积分生成器","authors":"Murray Child, Martin Widmer","doi":"10.4064/aa230601-18-9","DOIUrl":null,"url":null,"abstract":"We improve Mahler's lower bound for the Mahler measure in terms of the discriminant and degree for a specific class of polynomials: complex monic polynomials of degree $d\\geq 2$ such that all roots with modulus greater than some fixed value $r\\geq1$ occur in equal modulus pairs. We improve Mahler's exponent $\\frac{1}{2d-2}$ on the discriminant to $\\frac{1}{2d-3}$. Moreover, we show that this value is sharp, even when restricting to minimal polynomials of integral generators of a fixed not totally real number field. An immediate consequence of this new lower bound is an improved lower bound for integral generators of number fields, generalising a simple observation of Ruppert from imaginary quadratic to totally complex number fields of arbitrary degree.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"70 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Mahler’s inequality and small integral generators of totally complex number fields\",\"authors\":\"Murray Child, Martin Widmer\",\"doi\":\"10.4064/aa230601-18-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We improve Mahler's lower bound for the Mahler measure in terms of the discriminant and degree for a specific class of polynomials: complex monic polynomials of degree $d\\\\geq 2$ such that all roots with modulus greater than some fixed value $r\\\\geq1$ occur in equal modulus pairs. We improve Mahler's exponent $\\\\frac{1}{2d-2}$ on the discriminant to $\\\\frac{1}{2d-3}$. Moreover, we show that this value is sharp, even when restricting to minimal polynomials of integral generators of a fixed not totally real number field. An immediate consequence of this new lower bound is an improved lower bound for integral generators of number fields, generalising a simple observation of Ruppert from imaginary quadratic to totally complex number fields of arbitrary degree.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa230601-18-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa230601-18-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们从判别式和度的角度改进了马勒对一类特定多项式的马勒度量下界:度为 $d\geq 2$ 的复一元多项式,使得所有模大于某个固定值 $r\geq1$ 的根都以等模对的形式出现。我们将马勒在判别式上的指数 $\frac{1}{2d-2}$ 改进为 $\frac{1}{2d-3}$ 。此外,我们还证明了这一数值是尖锐的,即使限制在一个固定的非全实数域的积分发电机的最小多项式上也是如此。这一新下界的直接结果是改进了数域积分生成器的下界,将鲁珀特的一个简单观察从虚二次数域推广到任意度的全复数域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Mahler’s inequality and small integral generators of totally complex number fields
We improve Mahler's lower bound for the Mahler measure in terms of the discriminant and degree for a specific class of polynomials: complex monic polynomials of degree $d\geq 2$ such that all roots with modulus greater than some fixed value $r\geq1$ occur in equal modulus pairs. We improve Mahler's exponent $\frac{1}{2d-2}$ on the discriminant to $\frac{1}{2d-3}$. Moreover, we show that this value is sharp, even when restricting to minimal polynomials of integral generators of a fixed not totally real number field. An immediate consequence of this new lower bound is an improved lower bound for integral generators of number fields, generalising a simple observation of Ruppert from imaginary quadratic to totally complex number fields of arbitrary degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信