{"title":"准凸函数部分正则性的极限情况","authors":"M. Piccinini","doi":"10.3934/mine.2024001","DOIUrl":null,"url":null,"abstract":"<abstract><p>Local minimizers of nonhomogeneous quasiconvex variational integrals with standard $ p $-growth of the type</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ w\\mapsto \\int \\left[F(Dw)-f\\cdot w\\right]{\\,{{\\rm{d}}}x} $\\end{document} </tex-math></disp-formula></p> <p>feature almost everywhere $ \\mbox{BMO} $-regular gradient provided that $ f $ belongs to the borderline Marcinkiewicz space $ L(n, \\infty) $.</p></abstract>","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"62 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A limiting case in partial regularity for quasiconvex functionals\",\"authors\":\"M. Piccinini\",\"doi\":\"10.3934/mine.2024001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Local minimizers of nonhomogeneous quasiconvex variational integrals with standard $ p $-growth of the type</p> <p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ w\\\\mapsto \\\\int \\\\left[F(Dw)-f\\\\cdot w\\\\right]{\\\\,{{\\\\rm{d}}}x} $\\\\end{document} </tex-math></disp-formula></p> <p>feature almost everywhere $ \\\\mbox{BMO} $-regular gradient provided that $ f $ belongs to the borderline Marcinkiewicz space $ L(n, \\\\infty) $.</p></abstract>\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2024001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2024001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
非均质准凸变积分的局部最小值具有标准的 $ p $ 增长类型(begin{document}$ w\mapsto int \left[F(Dw)-f\cdot w\right]{、{{rm{d}}}x} $\end{document}的特征是几乎无处不在的 $ \mbox{BMO} $规则梯度,条件是 $ f $ 属于边界线马钦凯维奇空间 $ L(n, \infty) $。