关于贝塞尔--里兹算子

FACENA Pub Date : 2023-08-12 DOI:10.30972/fac.2306816
R. A. Cerutti
{"title":"关于贝塞尔--里兹算子","authors":"R. A. Cerutti","doi":"10.30972/fac.2306816","DOIUrl":null,"url":null,"abstract":"We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property ϕ = ϕ α β α+β W W W ; and ( +m2 ) α α−2 W ϕ = W for α > 2 where ( +m2 ) is the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator ϕα W may be consider as a negative power of the Klein-Gordon operato","PeriodicalId":502481,"journal":{"name":"FACENA","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON BESSEL-RIESZ OPERATORS\",\"authors\":\"R. A. Cerutti\",\"doi\":\"10.30972/fac.2306816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property ϕ = ϕ α β α+β W W W ; and ( +m2 ) α α−2 W ϕ = W for α > 2 where ( +m2 ) is the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator ϕα W may be consider as a negative power of the Klein-Gordon operato\",\"PeriodicalId\":502481,\"journal\":{\"name\":\"FACENA\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FACENA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30972/fac.2306816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FACENA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30972/fac.2306816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一类卷积算子,记为ϕα W,它是通过与参数为分布 ( ) P ± i0 的第一类贝塞尔函数 γ J 的广义函数卷积而得到的。我们研究了算子 ϕα W 的一些基本性质,如半群性质 ϕ = ϕα β α+β W W ;以及 α > 2 时 ( +m2 ) α α-2 W ϕ = W,其中 ( +m2 ) 是克莱因-戈登超双曲算子。此外,我们还证明,可以把算子 ϕα W 视为克莱因-戈登算子的负幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON BESSEL-RIESZ OPERATORS
We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property ϕ = ϕ α β α+β W W W ; and ( +m2 ) α α−2 W ϕ = W for α > 2 where ( +m2 ) is the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator ϕα W may be consider as a negative power of the Klein-Gordon operato
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信