{"title":"利用产量属性特征阐明鹰嘴豆(Cicer arietinum L.)的遗传多样性和变异性","authors":"A. Babbar, Monica Jyoti Kujur, Prachi Sharma, Balkishan Chaudhary, Monika Patel, Archana Shakya","doi":"10.36953/ecj.22362578","DOIUrl":null,"url":null,"abstract":"Fifty-six desi chickpea (Cicer arietinum L.) advance breeding lines were evaluated in order to explore the possibility of genetic divergence for yield and its contributing traits using Mahalanobis’s D2 Statistics and Principal Component Analysis. High estimates of heritability, genetic advance, GCV and PCV were recorded for seed yield per plant (92.2%, 12.4%, 37.1% and 38.7%), biological yield per plant (88.1%, 21.9%, 29.1% and 31.0%) and harvest index (87.3%, 25.0%, 22.7% and 24.3%). All the test genotypes were sort into five discrete clusters. Biological yield/plant (23.5%), days to maturity (17.3%), harvest index (14.6%), seed yield/plant (11.3%), total number of pods/plant (7.4%) and 100 seed weight (6.49%) were found to have highest percentage contributions to genetic diversity in the present research. The first six principal components (PC1 19.7%, PC 16.2%, PC3 11.2%, PC4 9.69%, PC5 7.2% and PC6 6.69%) could explain 70.68% of the total of the interaction variation and have Eigen value more than one. Genotypes JG 2016-1411, JG 2016-9605, JG 2017-46, ICCV 16105, ICCV 16109, ICCV 16112 and ICCV 16116 were present in more than one PCs hence contributed maximum towards yield and can be used in various breeding programmes for yield improvement.","PeriodicalId":12035,"journal":{"name":"Environment Conservation Journal","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating genetic diversity and variability in Chickpea (Cicer arietinum L.) using yield attribution traits\",\"authors\":\"A. Babbar, Monica Jyoti Kujur, Prachi Sharma, Balkishan Chaudhary, Monika Patel, Archana Shakya\",\"doi\":\"10.36953/ecj.22362578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fifty-six desi chickpea (Cicer arietinum L.) advance breeding lines were evaluated in order to explore the possibility of genetic divergence for yield and its contributing traits using Mahalanobis’s D2 Statistics and Principal Component Analysis. High estimates of heritability, genetic advance, GCV and PCV were recorded for seed yield per plant (92.2%, 12.4%, 37.1% and 38.7%), biological yield per plant (88.1%, 21.9%, 29.1% and 31.0%) and harvest index (87.3%, 25.0%, 22.7% and 24.3%). All the test genotypes were sort into five discrete clusters. Biological yield/plant (23.5%), days to maturity (17.3%), harvest index (14.6%), seed yield/plant (11.3%), total number of pods/plant (7.4%) and 100 seed weight (6.49%) were found to have highest percentage contributions to genetic diversity in the present research. The first six principal components (PC1 19.7%, PC 16.2%, PC3 11.2%, PC4 9.69%, PC5 7.2% and PC6 6.69%) could explain 70.68% of the total of the interaction variation and have Eigen value more than one. Genotypes JG 2016-1411, JG 2016-9605, JG 2017-46, ICCV 16105, ICCV 16109, ICCV 16112 and ICCV 16116 were present in more than one PCs hence contributed maximum towards yield and can be used in various breeding programmes for yield improvement.\",\"PeriodicalId\":12035,\"journal\":{\"name\":\"Environment Conservation Journal\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment Conservation Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36953/ecj.22362578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment Conservation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36953/ecj.22362578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elucidating genetic diversity and variability in Chickpea (Cicer arietinum L.) using yield attribution traits
Fifty-six desi chickpea (Cicer arietinum L.) advance breeding lines were evaluated in order to explore the possibility of genetic divergence for yield and its contributing traits using Mahalanobis’s D2 Statistics and Principal Component Analysis. High estimates of heritability, genetic advance, GCV and PCV were recorded for seed yield per plant (92.2%, 12.4%, 37.1% and 38.7%), biological yield per plant (88.1%, 21.9%, 29.1% and 31.0%) and harvest index (87.3%, 25.0%, 22.7% and 24.3%). All the test genotypes were sort into five discrete clusters. Biological yield/plant (23.5%), days to maturity (17.3%), harvest index (14.6%), seed yield/plant (11.3%), total number of pods/plant (7.4%) and 100 seed weight (6.49%) were found to have highest percentage contributions to genetic diversity in the present research. The first six principal components (PC1 19.7%, PC 16.2%, PC3 11.2%, PC4 9.69%, PC5 7.2% and PC6 6.69%) could explain 70.68% of the total of the interaction variation and have Eigen value more than one. Genotypes JG 2016-1411, JG 2016-9605, JG 2017-46, ICCV 16105, ICCV 16109, ICCV 16112 and ICCV 16116 were present in more than one PCs hence contributed maximum towards yield and can be used in various breeding programmes for yield improvement.