雅可比第一和第二类函数的多积分表示法

Q1 Mathematics
H. Cohl, R. S. Costas-Santos
{"title":"雅可比第一和第二类函数的多积分表示法","authors":"H. Cohl, R. S. Costas-Santos","doi":"10.1080/25765299.2023.2268911","DOIUrl":null,"url":null,"abstract":"Abstract One may consider the generalization of Jacobi polynomials and the Jacobi function of the second kind to a general function where the degree is allowed to be a complex number instead of a non-negative integer. These functions are referred to as Jacobi functions. In a similar fashion as associated Legendre functions, these break into two categories, functions which are analytically continued from the real line segment (−1,1) and those analytically continued from the real ray (1,∞). Using properties of Gauss hypergeometric functions, we derive multi-derivative and multi-integral representations for the Jacobi functions of the first and second kind.","PeriodicalId":37239,"journal":{"name":"Arab Journal of Basic and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-integral representations for Jacobi functions of the first and second kind\",\"authors\":\"H. Cohl, R. S. Costas-Santos\",\"doi\":\"10.1080/25765299.2023.2268911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One may consider the generalization of Jacobi polynomials and the Jacobi function of the second kind to a general function where the degree is allowed to be a complex number instead of a non-negative integer. These functions are referred to as Jacobi functions. In a similar fashion as associated Legendre functions, these break into two categories, functions which are analytically continued from the real line segment (−1,1) and those analytically continued from the real ray (1,∞). Using properties of Gauss hypergeometric functions, we derive multi-derivative and multi-integral representations for the Jacobi functions of the first and second kind.\",\"PeriodicalId\":37239,\"journal\":{\"name\":\"Arab Journal of Basic and Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Basic and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25765299.2023.2268911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25765299.2023.2268911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们可以考虑把雅可比多项式和雅可比第二类函数推广到允许度数为复数而不是非负整数的一般函数。这些函数被称为雅可比函数。与相关的 Legendre 函数类似,这些函数分为两类:从实线段(-1,1)分析延续的函数和从实线(1,∞)分析延续的函数。利用高斯超几何函数的性质,我们导出了雅可比第一和第二类函数的多衍生和多积分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-integral representations for Jacobi functions of the first and second kind
Abstract One may consider the generalization of Jacobi polynomials and the Jacobi function of the second kind to a general function where the degree is allowed to be a complex number instead of a non-negative integer. These functions are referred to as Jacobi functions. In a similar fashion as associated Legendre functions, these break into two categories, functions which are analytically continued from the real line segment (−1,1) and those analytically continued from the real ray (1,∞). Using properties of Gauss hypergeometric functions, we derive multi-derivative and multi-integral representations for the Jacobi functions of the first and second kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Basic and Applied Sciences
Arab Journal of Basic and Applied Sciences Mathematics-Mathematics (all)
CiteScore
5.80
自引率
0.00%
发文量
31
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信