{"title":"瓦卡穆埃尔塔地层的剪切增强压实分析","authors":"J. Hasbani, E. Kias, R. Suarez-Rivera, V. Calo","doi":"10.3390/computation11120250","DOIUrl":null,"url":null,"abstract":"The laboratory measurements conducted on Vaca Muerta formation samples demonstrate stress-dependent elastic behavior and compaction under representative in situ conditions. The experimental results reveal that the analyzed samples display elastoplastic deformation and shear-enhanced compaction as primary plasticity mechanisms. These experimental findings contradict the expected linear elastic response anticipated before brittle failure, as reported in several studies on the geomechanical characterization of the Vaca Muerta formation. Therefore, we present a comprehensive laboratory analysis of Vaca Muerta formation samples showing their nonlinear elastic behavior and irrecoverable shear-enhanced compaction. Additionally, we calibrate an elastoplastic constitutive model based on these experimental observations. The resulting model accurately reproduces the observed phenomena, playing a pivotal role in geoengineering applications within the energy industry.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"41 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear-Enhanced Compaction Analysis of the Vaca Muerta Formation\",\"authors\":\"J. Hasbani, E. Kias, R. Suarez-Rivera, V. Calo\",\"doi\":\"10.3390/computation11120250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The laboratory measurements conducted on Vaca Muerta formation samples demonstrate stress-dependent elastic behavior and compaction under representative in situ conditions. The experimental results reveal that the analyzed samples display elastoplastic deformation and shear-enhanced compaction as primary plasticity mechanisms. These experimental findings contradict the expected linear elastic response anticipated before brittle failure, as reported in several studies on the geomechanical characterization of the Vaca Muerta formation. Therefore, we present a comprehensive laboratory analysis of Vaca Muerta formation samples showing their nonlinear elastic behavior and irrecoverable shear-enhanced compaction. Additionally, we calibrate an elastoplastic constitutive model based on these experimental observations. The resulting model accurately reproduces the observed phenomena, playing a pivotal role in geoengineering applications within the energy industry.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11120250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11120250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Shear-Enhanced Compaction Analysis of the Vaca Muerta Formation
The laboratory measurements conducted on Vaca Muerta formation samples demonstrate stress-dependent elastic behavior and compaction under representative in situ conditions. The experimental results reveal that the analyzed samples display elastoplastic deformation and shear-enhanced compaction as primary plasticity mechanisms. These experimental findings contradict the expected linear elastic response anticipated before brittle failure, as reported in several studies on the geomechanical characterization of the Vaca Muerta formation. Therefore, we present a comprehensive laboratory analysis of Vaca Muerta formation samples showing their nonlinear elastic behavior and irrecoverable shear-enhanced compaction. Additionally, we calibrate an elastoplastic constitutive model based on these experimental observations. The resulting model accurately reproduces the observed phenomena, playing a pivotal role in geoengineering applications within the energy industry.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.