N. Putu, Dita Ariani, S. Dewi, Made Windu, Antara Kesiman, I. Made, Gede Sunarya, Gusti Ayu, Agung Diatri Indradewi, I. G. Andika
{"title":"TPHerbleaf:基于 Lontar Usada Taru Pramana 的草本植物叶片类型分类数据集","authors":"N. Putu, Dita Ariani, S. Dewi, Made Windu, Antara Kesiman, I. Made, Gede Sunarya, Gusti Ayu, Agung Diatri Indradewi, I. G. Andika","doi":"10.31598/jurnalresistor.v6i2.1421","DOIUrl":null,"url":null,"abstract":"Tumbuhan herbal ialah jenis tumbuhan yang dimanfaatkan dalam bidang kesehatan. Tumbuhan herbal umumnya dikenali dari daunnya karena daun mudah dibandingkan dengan bagian tumbuhan lainnya seperti bunga, buah, atau akarnya. Minimnya pengetahuan mengenai jenis tumbuhan herbal dan kemiripan jenis morfologi daun merupakan tantangan yang ditemui dalam pengenalan tumbuhan herbal, sehingga sulit untuk mengenali tumbuhan herbal terutama bagi orang yang tidak memiliki pengetahuan botani. Penelitian ini bertujuan untuk membuat dataset citra daun tumbuhan herbal bernama TPHerbleaf. Dataset ini akan digunakan untuk mengenali dan mengklasifikasikan jenis daun tumbuhan herbal berpedoman pada Lontar Usada Taru Pramana yang merupakan kearifan lokal masyarakat Bali dalam pengobatan tradisional dan telah dikaji secara ilmiah. Metode untuk klasifikasi tumbuhan herbal menggunakan EfficientNet B2 yang menghasilkan nilai akurasi 97,5% untuk training, 81,77% untuk validation, dan 83,49% untuk testing. Dengan menggabungkan pengetahuan tradisional dengan teknologi modern, penelitian ini diharapkan dapat memberikan kontribusi dalam meningkatkan pemahaman serta pelestarian warisan budaya melalui aplikasi praktis dalam bidang klasifikasi citra.","PeriodicalId":164171,"journal":{"name":"Jurnal RESISTOR (Rekayasa Sistem Komputer)","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TPHerbleaf : Dataset Untuk Klasifikasi Jenis Daun Tumbuhan Herbal Berdasarkan Lontar Usada Taru Pramana\",\"authors\":\"N. Putu, Dita Ariani, S. Dewi, Made Windu, Antara Kesiman, I. Made, Gede Sunarya, Gusti Ayu, Agung Diatri Indradewi, I. G. Andika\",\"doi\":\"10.31598/jurnalresistor.v6i2.1421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tumbuhan herbal ialah jenis tumbuhan yang dimanfaatkan dalam bidang kesehatan. Tumbuhan herbal umumnya dikenali dari daunnya karena daun mudah dibandingkan dengan bagian tumbuhan lainnya seperti bunga, buah, atau akarnya. Minimnya pengetahuan mengenai jenis tumbuhan herbal dan kemiripan jenis morfologi daun merupakan tantangan yang ditemui dalam pengenalan tumbuhan herbal, sehingga sulit untuk mengenali tumbuhan herbal terutama bagi orang yang tidak memiliki pengetahuan botani. Penelitian ini bertujuan untuk membuat dataset citra daun tumbuhan herbal bernama TPHerbleaf. Dataset ini akan digunakan untuk mengenali dan mengklasifikasikan jenis daun tumbuhan herbal berpedoman pada Lontar Usada Taru Pramana yang merupakan kearifan lokal masyarakat Bali dalam pengobatan tradisional dan telah dikaji secara ilmiah. Metode untuk klasifikasi tumbuhan herbal menggunakan EfficientNet B2 yang menghasilkan nilai akurasi 97,5% untuk training, 81,77% untuk validation, dan 83,49% untuk testing. Dengan menggabungkan pengetahuan tradisional dengan teknologi modern, penelitian ini diharapkan dapat memberikan kontribusi dalam meningkatkan pemahaman serta pelestarian warisan budaya melalui aplikasi praktis dalam bidang klasifikasi citra.\",\"PeriodicalId\":164171,\"journal\":{\"name\":\"Jurnal RESISTOR (Rekayasa Sistem Komputer)\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal RESISTOR (Rekayasa Sistem Komputer)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31598/jurnalresistor.v6i2.1421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESISTOR (Rekayasa Sistem Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31598/jurnalresistor.v6i2.1421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TPHerbleaf : Dataset Untuk Klasifikasi Jenis Daun Tumbuhan Herbal Berdasarkan Lontar Usada Taru Pramana
Tumbuhan herbal ialah jenis tumbuhan yang dimanfaatkan dalam bidang kesehatan. Tumbuhan herbal umumnya dikenali dari daunnya karena daun mudah dibandingkan dengan bagian tumbuhan lainnya seperti bunga, buah, atau akarnya. Minimnya pengetahuan mengenai jenis tumbuhan herbal dan kemiripan jenis morfologi daun merupakan tantangan yang ditemui dalam pengenalan tumbuhan herbal, sehingga sulit untuk mengenali tumbuhan herbal terutama bagi orang yang tidak memiliki pengetahuan botani. Penelitian ini bertujuan untuk membuat dataset citra daun tumbuhan herbal bernama TPHerbleaf. Dataset ini akan digunakan untuk mengenali dan mengklasifikasikan jenis daun tumbuhan herbal berpedoman pada Lontar Usada Taru Pramana yang merupakan kearifan lokal masyarakat Bali dalam pengobatan tradisional dan telah dikaji secara ilmiah. Metode untuk klasifikasi tumbuhan herbal menggunakan EfficientNet B2 yang menghasilkan nilai akurasi 97,5% untuk training, 81,77% untuk validation, dan 83,49% untuk testing. Dengan menggabungkan pengetahuan tradisional dengan teknologi modern, penelitian ini diharapkan dapat memberikan kontribusi dalam meningkatkan pemahaman serta pelestarian warisan budaya melalui aplikasi praktis dalam bidang klasifikasi citra.