分数斯特姆-利乌维尔差分问题在分数扩散差分方程中的应用

A. Malinowska, T. Odzijewicz, A. Poskrobko
{"title":"分数斯特姆-利乌维尔差分问题在分数扩散差分方程中的应用","authors":"A. Malinowska, T. Odzijewicz, A. Poskrobko","doi":"10.34768/amcs-2023-0025","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional operators in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues and corresponding eigenfunctions of the Sturm–Liouville problem, we show that solutions of fractional diffusion difference equations exist and are given by a finite series.","PeriodicalId":502322,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"38 1","pages":"349 - 359"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation\",\"authors\":\"A. Malinowska, T. Odzijewicz, A. Poskrobko\",\"doi\":\"10.34768/amcs-2023-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional operators in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues and corresponding eigenfunctions of the Sturm–Liouville problem, we show that solutions of fractional diffusion difference equations exist and are given by a finite series.\",\"PeriodicalId\":502322,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"38 1\",\"pages\":\"349 - 359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文涉及同质和非同质分数扩散差分方程。空间和时间上的分数算子是在格伦瓦尔德和列特尼科夫的意义上定义的。应用 Sturm-Liouville 问题的特征值和相应特征函数的存在性结果,我们证明分数扩散差分方程的解是存在的,并且是由有限级数给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation
Abstract This paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional operators in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues and corresponding eigenfunctions of the Sturm–Liouville problem, we show that solutions of fractional diffusion difference equations exist and are given by a finite series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信