广义康托尔基础系统中的算术

IF 0.4 Q4 MATHEMATICS, APPLIED
Katarína Studenicová
{"title":"广义康托尔基础系统中的算术","authors":"Katarína Studenicová","doi":"10.1145/3637529.3637539","DOIUrl":null,"url":null,"abstract":"For alternate Cantor real base numeration systems we generalise the result of Frougny and Solomyak on arithmetics on the set of numbers with finite expansions. We generalise the notion of finiteness property, denoted (F). We also provide several necessary conditions, and comment on a sufficient condition of this property. The sufficient condition allows us to find a set of generalised Cantor bases with Property (F). The used construction also provides a method for performing addition of finite expansions in Cantor real bases.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"31 1","pages":"156 - 159"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetics in Generalised Cantor Base Systems\",\"authors\":\"Katarína Studenicová\",\"doi\":\"10.1145/3637529.3637539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For alternate Cantor real base numeration systems we generalise the result of Frougny and Solomyak on arithmetics on the set of numbers with finite expansions. We generalise the notion of finiteness property, denoted (F). We also provide several necessary conditions, and comment on a sufficient condition of this property. The sufficient condition allows us to find a set of generalised Cantor bases with Property (F). The used construction also provides a method for performing addition of finite expansions in Cantor real bases.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"31 1\",\"pages\":\"156 - 159\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3637529.3637539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3637529.3637539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于康托尔实基交替计数系统,我们推广了弗鲁格尼和索洛米亚克关于有限展开数集算术的结果。我们推广了有限性属性的概念,用 (F) 表示。我们还提供了几个必要条件,并对这一性质的充分条件进行了评论。充分条件允许我们找到一组具有属性 (F) 的广义康托尔基。所使用的构造还提供了一种在康托尔实基中执行有限展开加法的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetics in Generalised Cantor Base Systems
For alternate Cantor real base numeration systems we generalise the result of Frougny and Solomyak on arithmetics on the set of numbers with finite expansions. We generalise the notion of finiteness property, denoted (F). We also provide several necessary conditions, and comment on a sufficient condition of this property. The sufficient condition allows us to find a set of generalised Cantor bases with Property (F). The used construction also provides a method for performing addition of finite expansions in Cantor real bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信