黎曼假说和广义朗伯函数的凯伯李准则

IF 0.4 Q4 MATHEMATICS, APPLIED
Ross McPhedran, Tony C. Scott, A. Maignan
{"title":"黎曼假说和广义朗伯函数的凯伯李准则","authors":"Ross McPhedran, Tony C. Scott, A. Maignan","doi":"10.1145/3637529.3637530","DOIUrl":null,"url":null,"abstract":"Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"19 1","pages":"85 - 110"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions\",\"authors\":\"Ross McPhedran, Tony C. Scott, A. Maignan\",\"doi\":\"10.1145/3637529.3637530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"19 1\",\"pages\":\"85 - 110\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3637529.3637530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3637529.3637530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Keiper [1] 和 Li [2] 分别就黎曼假设与黎曼zeta 函数零点幂上和的性质之间的联系进行了研究。在此,我们考虑对这一准则进行重构,以处理对称函数 ξ(s) 在 s = 1/2 处的高阶导数ξr,已知所有ξr 均为正数。重构准则要求了解两个项的渐近特性,其中一个是ξr 的无限和。这需要利用已知的 ξr 的渐近展开来研究,渐近展开给出了和的位置,即两个参数之间的关系。这种关系需要反演,我们用广义朗伯函数证明了这一点。因此,我们可以精确地得到无限和值的渐近表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions
Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信