将博弈论和树论方法整合到康威数中

IF 1 Q1 MATHEMATICS
Karol Pąk
{"title":"将博弈论和树论方法整合到康威数中","authors":"Karol Pąk","doi":"10.2478/forma-2023-0019","DOIUrl":null,"url":null,"abstract":"Summary In this article, we develop our formalised concept of Conway numbers as outlined in [9]. We focus mainly pre-order properties, birthday arithmetic contained in the Chapter 1, Properties of Order and Equality of John Conway’s seminal book. We also propose a method for the selection of class representatives respecting the relation defined by the pre-ordering in order to facilitate combining the results obtained for the original and tree-theoretic definitions of Conway numbers.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"38 1","pages":"205 - 213"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Game Theoretic and Tree Theoretic Approaches to Conway Numbers\",\"authors\":\"Karol Pąk\",\"doi\":\"10.2478/forma-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this article, we develop our formalised concept of Conway numbers as outlined in [9]. We focus mainly pre-order properties, birthday arithmetic contained in the Chapter 1, Properties of Order and Equality of John Conway’s seminal book. We also propose a method for the selection of class representatives respecting the relation defined by the pre-ordering in order to facilitate combining the results obtained for the original and tree-theoretic definitions of Conway numbers.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":\"38 1\",\"pages\":\"205 - 213\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2023-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们发展了[9]中概述的康威数的形式化概念。我们主要关注约翰-康威(John Conway)的开创性著作第 1 章 "有序与相等的性质 "中所包含的预排序性质和生日算术。我们还提出了一种根据预排序定义的关系选择类代表的方法,以便于将康威数的原始定义和树理论定义所获得的结果结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Game Theoretic and Tree Theoretic Approaches to Conway Numbers
Summary In this article, we develop our formalised concept of Conway numbers as outlined in [9]. We focus mainly pre-order properties, birthday arithmetic contained in the Chapter 1, Properties of Order and Equality of John Conway’s seminal book. We also propose a method for the selection of class representatives respecting the relation defined by the pre-ordering in order to facilitate combining the results obtained for the original and tree-theoretic definitions of Conway numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信