Rui Liu, Kwanghyun Park, Fotis Psallidas, Xiaoyong Zhu, Jinghui Mo, Rathijit Sen, Matteo Interlandi, Konstantinos Karanasos, Yuanyuan Tian, Jesús Camacho-Rodríguez
{"title":"在特征库中优化机器学习的数据管道","authors":"Rui Liu, Kwanghyun Park, Fotis Psallidas, Xiaoyong Zhu, Jinghui Mo, Rathijit Sen, Matteo Interlandi, Konstantinos Karanasos, Yuanyuan Tian, Jesús Camacho-Rodríguez","doi":"10.14778/3625054.3625060","DOIUrl":null,"url":null,"abstract":"Data pipelines (i.e., converting raw data to features) are critical for machine learning (ML) models, yet their development and management is time-consuming. Feature stores have recently emerged as a new \"DBMS-for-ML\" with the premise of enabling data scientists and engineers to define and manage their data pipelines. While current feature stores fulfill their promise from a functionality perspective, they are resource-hungry---with ample opportunities for implementing database-style optimizations to enhance their performance. In this paper, we propose a novel set of optimizations specifically targeted for point-in-time join, which is a critical operation in data pipelines. We implement these optimizations on top of Feathr: a widely-used feature store, and evaluate them on use cases from both the TPCx-AI benchmark and real-world online retail scenarios. Our thorough experimental analysis shows that our optimizations can accelerate data pipelines by up to 3× over state-of-the-art baselines.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"24 1","pages":"4230-4239"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Data Pipelines for Machine Learning in Feature Stores\",\"authors\":\"Rui Liu, Kwanghyun Park, Fotis Psallidas, Xiaoyong Zhu, Jinghui Mo, Rathijit Sen, Matteo Interlandi, Konstantinos Karanasos, Yuanyuan Tian, Jesús Camacho-Rodríguez\",\"doi\":\"10.14778/3625054.3625060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data pipelines (i.e., converting raw data to features) are critical for machine learning (ML) models, yet their development and management is time-consuming. Feature stores have recently emerged as a new \\\"DBMS-for-ML\\\" with the premise of enabling data scientists and engineers to define and manage their data pipelines. While current feature stores fulfill their promise from a functionality perspective, they are resource-hungry---with ample opportunities for implementing database-style optimizations to enhance their performance. In this paper, we propose a novel set of optimizations specifically targeted for point-in-time join, which is a critical operation in data pipelines. We implement these optimizations on top of Feathr: a widely-used feature store, and evaluate them on use cases from both the TPCx-AI benchmark and real-world online retail scenarios. Our thorough experimental analysis shows that our optimizations can accelerate data pipelines by up to 3× over state-of-the-art baselines.\",\"PeriodicalId\":20467,\"journal\":{\"name\":\"Proc. VLDB Endow.\",\"volume\":\"24 1\",\"pages\":\"4230-4239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. VLDB Endow.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3625054.3625060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3625054.3625060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Data Pipelines for Machine Learning in Feature Stores
Data pipelines (i.e., converting raw data to features) are critical for machine learning (ML) models, yet their development and management is time-consuming. Feature stores have recently emerged as a new "DBMS-for-ML" with the premise of enabling data scientists and engineers to define and manage their data pipelines. While current feature stores fulfill their promise from a functionality perspective, they are resource-hungry---with ample opportunities for implementing database-style optimizations to enhance their performance. In this paper, we propose a novel set of optimizations specifically targeted for point-in-time join, which is a critical operation in data pipelines. We implement these optimizations on top of Feathr: a widely-used feature store, and evaluate them on use cases from both the TPCx-AI benchmark and real-world online retail scenarios. Our thorough experimental analysis shows that our optimizations can accelerate data pipelines by up to 3× over state-of-the-art baselines.