{"title":"无终端约束的最优控制问题:具有内部衰减的岔道特性","authors":"M. Gugat, Martin Lazar","doi":"10.34768/amcs-2023-0031","DOIUrl":null,"url":null,"abstract":"Abstract We show a turnpike result for problems of optimal control with possibly nonlinear systems as well as pointwise-in-time state and control constraints. The objective functional is of integral type and contains a tracking term which penalizes the distance to a desired steady state. In the optimal control problem, only the initial state is prescribed. We assume that a cheap control condition holds that yields a bound for the optimal value of our optimal control problem in terms of the initial data. We show that the solutions to the optimal control problems on the time intervals [0,T ] have a turnpike structure in the following sense: For large T the contribution to the objective functional that comes from the subinterval [T/2,T ], i.e., from the second half of the time interval [0,T ], is at most of the order 1/T . More generally, the result holds for subintervals of the form [rT,T ], where r ∈ (0, 1/2) is a real number. Using this result inductively implies that the decay of the integral on such a subinterval in the objective function is faster than the reciprocal value of a power series in T with positive coefficients. Accordingly, the contribution to the objective value from the final part of the time interval decays rapidly with a growing time horizon. At the end of the paper we present examples for optimal control problems where our results are applicable.","PeriodicalId":502322,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"29 1","pages":"429 - 438"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control Problems without Terminal Constraints: The Turnpike Property with Interior Decay\",\"authors\":\"M. Gugat, Martin Lazar\",\"doi\":\"10.34768/amcs-2023-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show a turnpike result for problems of optimal control with possibly nonlinear systems as well as pointwise-in-time state and control constraints. The objective functional is of integral type and contains a tracking term which penalizes the distance to a desired steady state. In the optimal control problem, only the initial state is prescribed. We assume that a cheap control condition holds that yields a bound for the optimal value of our optimal control problem in terms of the initial data. We show that the solutions to the optimal control problems on the time intervals [0,T ] have a turnpike structure in the following sense: For large T the contribution to the objective functional that comes from the subinterval [T/2,T ], i.e., from the second half of the time interval [0,T ], is at most of the order 1/T . More generally, the result holds for subintervals of the form [rT,T ], where r ∈ (0, 1/2) is a real number. Using this result inductively implies that the decay of the integral on such a subinterval in the objective function is faster than the reciprocal value of a power series in T with positive coefficients. Accordingly, the contribution to the objective value from the final part of the time interval decays rapidly with a growing time horizon. At the end of the paper we present examples for optimal control problems where our results are applicable.\",\"PeriodicalId\":502322,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"29 1\",\"pages\":\"429 - 438\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Control Problems without Terminal Constraints: The Turnpike Property with Interior Decay
Abstract We show a turnpike result for problems of optimal control with possibly nonlinear systems as well as pointwise-in-time state and control constraints. The objective functional is of integral type and contains a tracking term which penalizes the distance to a desired steady state. In the optimal control problem, only the initial state is prescribed. We assume that a cheap control condition holds that yields a bound for the optimal value of our optimal control problem in terms of the initial data. We show that the solutions to the optimal control problems on the time intervals [0,T ] have a turnpike structure in the following sense: For large T the contribution to the objective functional that comes from the subinterval [T/2,T ], i.e., from the second half of the time interval [0,T ], is at most of the order 1/T . More generally, the result holds for subintervals of the form [rT,T ], where r ∈ (0, 1/2) is a real number. Using this result inductively implies that the decay of the integral on such a subinterval in the objective function is faster than the reciprocal value of a power series in T with positive coefficients. Accordingly, the contribution to the objective value from the final part of the time interval decays rapidly with a growing time horizon. At the end of the paper we present examples for optimal control problems where our results are applicable.